|
7.7.12 ncalg_lib
- Library:
- ncalg.lib
- Purpose:
- Definitions of important G- and GR-algebras
- Authors:
- Viktor Levandovskyy, levandov@mathematik.uni-kl.de,
Oleksandr Motsak, U@D, where U={motsak}, D={mathematik.uni-kl.de}
- Conventions:
- This library provides pre-defined important noncommutative algebras.
For universal enveloping algebras of finite dimensional Lie algebras sl_n, gl_n, g_2 etc.
there are functions makeUsl , makeUgl , makeUg2 etc.
For quantized enveloping algebras U_q(sl_2) and U_q(sl_3), there are functions makeQsl2 , makeQsl3 )
and for non-standard quantum deformation of so_3, there is the function makeQso3 .
For bigger algebras we suppress the output of the (lengthy) list of non-commutative relations
and provide only the number of these relations instead.
Procedures:
7.7.12.0. makeUsl2 | | create U(sl_2) in the variables (e,f,h) in char p>=0 |
7.7.12.0. makeUsl | | create U(sl_n) in char p>=0 |
7.7.12.0. makeUgl | | create U(gl_n) in the variables (e_i_j (1<i,j<n)) in char p>=0 |
7.7.12.0. makeUso5 | | create U(so_5) in the variables (x(i),y(i),H(i)) in char p>=0 |
7.7.12.0. makeUso6 | | create U(so_6) in the variables (x(i),y(i),H(i)) in char p>=0 |
7.7.12.0. makeUso7 | | create U(so_7) in the variables (x(i),y(i),H(i)) in char p>=0 |
7.7.12.0. makeUso8 | | create U(so_8) in the variables (x(i),y(i),H(i)) in char p>=0 |
7.7.12.0. makeUso9 | | create U(so_9) in the variables (x(i),y(i),H(i)) in char p>=0 |
7.7.12.0. makeUso10 | | create U(so_{10}) in the variables (x(i),y(i),H(i)) in char p>=0 |
7.7.12.0. makeUso11 | | create U(so_{11}) in the variables (x(i),y(i),H(i)) in char p>=0 |
7.7.12.0. makeUso12 | | create U(so_{12}) in the variables (x(i),y(i),H(i)) in char p>=0 |
7.7.12.0. makeUsp1 | | create U(sp_1) in the variables (x(i),y(i),H(i)) in char p>=0 |
7.7.12.0. makeUsp2 | | create U(sp_2) in the variables (x(i),y(i),H(i)) in char p>=0 |
7.7.12.0. makeUsp3 | | create U(sp_3) in the variables (x(i),y(i),H(i)) in char p>=0 |
7.7.12.0. makeUsp4 | | create U(sp_4) in the variables (x(i),y(i),H(i)) in char p>=0 |
7.7.12.0. makeUsp5 | | create U(sp_5) in the variables (x(i),y(i),H(i)) in char p>=0 |
7.7.12.0. makeUg2 | | create U(g_2) in the variables (x(i),y(i),Ha,Hb) in char p>=0 |
7.7.12.0. makeUf4 | | create U(f_4) in the variables (x(i),y(i),H(i)) in char p>=0 |
7.7.12.0. makeUe6 | | create U(e_6) in the variables (x(i),y(i),H(i)) in char p>=0 |
7.7.12.0. makeUe7 | | create U(e_7) in the variables (x(i),y(i),H(i)) in char p>=0 |
7.7.12.0. makeUe8 | | create U(e_8) in the variables (x(i),y(i),H(i)) in char p>=0 |
7.7.12.0. makeQso3 | | create U_q(so_3) in the presentation of Klimyk (if int n is given, the quantum parameter will be specialized at the 2n-th root of unity) |
7.7.12.0. makeQsl2 | | preparation for U_q(sl_2) as factor-algebra; if n is specified, the quantum parameter q will be specialized at the n-th root of unity |
7.7.12.0. makeQsl3 | | preparation for U_q(sl_3) as factor-algebra; if n is specified, the quantum parameter q will be specialized at the n-th root of unity |
7.7.12.0. Qso3Casimir | | returns a list with the (optionally normalized) Casimir elements of U_q(so_3) for the quantum parameter specialized at the 2n-th root of unity |
7.7.12.0. GKZsystem | | define a ring and a Gelfand-Kapranov-Zelevinsky system of differential equations |
|