|
7.7.18.0. qminor
Procedure from library qmatrix.lib (see qmatrix_lib).
- Usage:
- qminor(I,J,n); I,J intvec, n int
- Return:
- poly, the quantum minor of a generic n*n quantum matrix
- Assume:
- I is the ordered list of the rows to consider in the minor,
J is the ordered list of the columns to consider in the minor,
I and J must have the same number of elements,
n is the order of the quantum matrix algebra you are working with (quantMat(n)).
The base ring should be constructed using quantMat .
Example:
| LIB "qmatrix.lib";
def r = quantMat(3); // let r be a quantum matrix of order 3
setring r;
intvec u = 1,2;
intvec v = 2,3;
intvec w = 1,2,3;
qminor(w,w,3);
==> y(1)*y(5)*y(9)+(-q)*y(1)*y(6)*y(8)+(-q)*y(2)*y(4)*y(9)+(q^2)*y(2)*y(6)*y(\
7)+(q^2)*y(3)*y(4)*y(8)+(-q^3)*y(3)*y(5)*y(7)
qminor(u,v,3);
==> y(2)*y(6)+(-q)*y(3)*y(5)
qminor(v,u,3);
==> y(4)*y(8)+(-q)*y(5)*y(7)
qminor(u,u,3);
==> y(1)*y(5)+(-q)*y(2)*y(4)
| See also:
quantMat.
|