|
A.2.2 Groebner basis conversion
The performance of Buchberger's algorithm is
sensitive to the chosen monomial order. A Groebner basis
computation with respect to a less favorable order such as
the lexicographic ordering may easily run out of time or memory even
in cases where a Groebner basis computation with respect to a more efficient
order such as the degree reverse lexicographic ordering is very well
feasible. Groebner basis conversion algorithms and the Hilbert-driven
Buchberger algorithm are based on this observation:
SINGULAR provides implementations for the FGLM conversion algorithm
(which applies to zero-dimensional ideals only, see stdfglm) and
variants of the Groebner walk conversion algorithm (which works for
arbitrary ideals, See frwalk, grwalk_lib).
An implementation of the Hilbert-driven Buchberger
algorithm is accessible via the stdhilb command (see also std).
For the ideal below, stdfglm is more than 100 times
and stdhilb about 10 times faster than std .
| ring r =32003,(a,b,c,d,e),lp;
ideal i=a+b+c+d, ab+bc+cd+ae+de, abc+bcd+abe+ade+cde,
abc+abce+abde+acde+bcde, abcde-1;
int t=timer;
option(prot);
ideal j1=stdfglm(i);
==> std in (ZZ/32003),(a,b,c,d,e),(dp(5),C,L(1048575))
==> [4095:2]1(4)s2(3)s3(2)s4s(3)s5s(4)s(5)s(6)6-ss(7)s(9)s(11)-7-ss(13)s(15)s\
(17)--s--8-s(16)s(18)s(20)s(23)s(26)-s(23)-------9--s(16)s10(19)s(22)s(25\
)----s(24)--s11---------s12(17)s(19)s(21)------s(17)s(19)s(21)s13(23)s--s\
-----s(20)----------14-s(12)--------15-s(6)--16-s(5)--17---
==> (S:21)---------------------
==> product criterion:109 chain criterion:322
==> .....+....-...-..-+-....-...-..---...-++---++---....-...-++---.++-----------...------....-...------+--------+---.++------++++-+++----------------+---
==> vdim= 45
==> .............................................++--------------------------------------------+--------------------------------------------+--------------------------------------------+--------------------------------------------
timer-t;
==> 0
size(j1); // size (no. of polys) in computed GB
==> 5
t=timer;
ideal j2=stdhilb(i);
==> compute hilbert series with std in ring (ZZ/32003),(a,b,c,d,e,@),(dp(6),C\
,L(1048575))
==> weights used for hilbert series: 1,1,1,1,1,1
==> [1023:1]1(4)s2(3)s3(2)s4ss5(3)s(4)s(5)-s6s(6)s(7)s(9)s(11)-7-ss(13)s(15)s\
(17)--s--8-s(16)s(18)s(20)s(23)s(26)-s(29)-------9-s(25)s(28)--s(29)---s-\
------10-s(24)-------s(19)---11-s(17)s(19)s(21)-----s(18)-s(19)s12(21)s(2\
3)s(26)-s(27)------s(23)----------13-s(15)-----------14-s(6)--15-s(5)--16\
---
==> product criterion:88 chain criterion:650
==> std with hilb in (ZZ/32003),(a,b,c,d,e,@),(lp(5),dp(1),C,L(1048575))
==> [1023:1]1(41)s2(40)s3(39)s4s(40)-s5(41)s(44)s(46)s-s-sh6s(49)s(51)s(54)s(\
55)s(56)s(58)s(59)--shhhhhhh7(53)s(55)s(57)s(59)s(61)-s(62)s(68)s(70)s(71\
)s(74)--shhhhhhhhhhhhhhhh8(58)s(61)s(65)s(68)s(71)-s(72)s(75)--------shhh\
hhhhhhhhhhhhhhhh9(51)s(53)s(56)s(58)s(61)s(64)------s(61)s(64)shhhhhhhhhh\
hhhhh10(53)s(55)s(58)s(62)s(64)s(67)s(70)--s(71)------s(68)s(71)s(73)--sh\
hhhhhhhhhhhhhhh11(58)s(60)s(63)s(66)s(69)s(72)s(74)---s-s(76)s(79)----s(7\
8)-------shhhhhhhhhhhhhhhhhhhhhhh12(51)s(54)s(57)s(58)s(60)s(63)s(65)s(68\
)s(70)s(73)s(76)s(79)--s(80)----shhhhhhhhhhhhhhhhhhhhhhhhhhhhhh13(48)s(51\
)s(54)s(57)s(59)s(61)s(64)s(67)shhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh14\
(31)s(33)s(36)s(39)s(42)s(45)shhhhhhhhhhhhhhhhhhhhhhhhh15(23)s(26)s(29)s(\
32)s(35)shhhhhhhhhhhhhhhhhhh16(18)s(21)s(24)s(27)shhhhhhhhhhhhhhh17(15)s(\
18)s(21)s(24)shhhhhhhhhhhh18(15)s(18)s(21)s(24)shhhhhhhhhhhh19(14)s(17)s(\
20)shhhhhhhhhhhh20(11)s(14)s(17)shhhhhhhhh21(11)s(14)s(17)shhhhhhhhh22(11\
)s(14)s(16)shhhhhhhhh23(10)s(13)shhhhhhhhh24(7)s(10)shhhhhh25(7)s(10)shhh\
hhh26(7)s(10)shhhhhh27(7)s(10)shhhhhh28(7)s(10)shhhhhh29(7)s(10)shhhhhh30\
(7)s(9)shhhhhh31(6)shhhhhh32(3)shhh33shhh34shhh35shhh36shhh37shhh38shhh39\
shhh40shhh41shhh42shhh43shhh44shhh45shhh46shhh47shhh48shhh49shhh50shhh51s\
hhh52shhh53shhh54shhhhhh
==> product criterion:491 chain criterion:11799
==> hilbert series criterion:417
==> dehomogenization
==> simplification
==> imap to ring (ZZ/32003),(a,b,c,d,e),(lp(5),C,L(1048575))
timer-t;
==> 0
size(j2); // size (no. of polys) in computed GB
==> 5
// usual Groebner basis computation for lex ordering
t=timer;
ideal j0 =std(i);
==> [4095:1]1(4)s2(3)s3(2)s4s(3)s5(5)s(4)s6(6)s(7)s(9)s(8)sss7(10)s(11)s(10)s\
(11)s(13)s8(12)s(13)s(15)s.s(14).s.9.s(16)s(17)s(19)........10.s(20).s(21\
)ss..11.s(23)s(25).ss(27)...s(28)s(26)...12.s(25)sss(23)sss.......s(22)..\
.13.s(23)ssssssss(21)s(22)sssss(21)ss..14.ss(22)s.s.sssss(21)s(22)sss.s..\
.15.ssss(21)s(22)ssssssssss(21)s(22)sss16.ssssssss(21)s(22)sssssssssss17s\
s(21)s(22)ssssssssss(21)sss(22)ss(21)ss18(22)s(21)s(22)s.s..............1\
9.sssss(21)ss(22)ssssssssss(21)s(22)s20.ssssssssss(21)s........21.s(22)ss\
sssssssssssss(21)s(22)ssss22ssssssssssss(21)s(22)sssssss23sssssssssss(21)\
s(22)ssssssss24ssssssssssss(21)s(22)sssssss25ssssssssss(21)s(22)sssssssss\
26ssssssssss(21)s(20)ssssssss27.sssssssss..........s28.ssssss............\
.29.sssssssssssssssssss30sssssssssssssssssss31.sssssssssssssssssss32.ssss\
ssssssssssssssss33ssssssssssssssssssss34ssssssssssssssssssss35sssssssssss\
sssssssss36ssssssssssssssssssss37ssssssssssssssssssss38ssssssssssssssssss\
ss39ssssssssssssssssssss40ssssssssssssssssssss41ssss---------------42-s(4\
)--43-s44s45s46s47s48s49s50s51s52s53s54s55s56s
==> product criterion:1395 chain criterion:904
option(noprot);
timer-t;
==> 0
|
|