D.2.8.1 cyclic | | ideal of cyclic n-roots |
D.2.8.2 elemSymmId | | ideal of elementary symmetric polynomials |
D.2.8.3 katsura | | katsura [i] ideal |
D.2.8.4 freerank | | rank of coker(input) if coker is free else -1 |
D.2.8.5 is_zero | | int, =1 resp. =0 if coker(input) is 0 resp. not |
D.2.8.6 lcm | | lcm of given generators of ideal |
D.2.8.7 maxcoef | | maximal length of coefficient occurring in poly/... |
D.2.8.8 maxdeg | | int/intmat = degree/s of terms of maximal order |
D.2.8.9 maxdeg1 | | int = [weighted] maximal degree of input |
D.2.8.10 mindeg | | int/intmat = degree/s of terms of minimal order |
D.2.8.11 mindeg1 | | int = [weighted] minimal degree of input |
D.2.8.12 normalize | | normalize poly/... such that leading coefficient is 1 |
D.2.8.13 rad_con | | check radical containment of polynomial p in ideal I |
D.2.8.14 content | | content of polynomial/vector f |
D.2.8.15 mod2id | | conversion of a module M to an ideal |
D.2.8.16 id2mod | | conversion inverse to mod2id |
D.2.8.17 substitute | | substitute in I variables by polynomials |
D.2.8.18 subrInterred | | interred w.r.t. a subset of variables |
D.2.8.19 newtonDiag | | Newton diagram of a polynomial |
D.2.8.20 hilbPoly | | Hilbert polynomial of basering/I |