Home Online Manual
Top
Back: stdlocus
Forward: FamElemsAtEnvCompPoints
FastBack:
FastForward:
Up: grobcov_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.2.4.17 AssocTanToEnv

Procedure from library grobcov.lib (see grobcov_lib).

Usage:
AssocTanToEnv(poly F,ideal C,ideal E);
poly F must be the family of hyper-surfaces whose
envelope is analyzed. It must be defined in the ring
R=Q[x_1.,,x_n][u_1,..,u_m],
ideal C must be the ideal of restrictions
in the variables u1,..um for defining the family.
C must contain less polynomials than m.
ideal E must be a component of
envelop(F,C), previously computed.
(x_1,..,x_n) are the variables of the hypersurfaces
of F, that are considered as parameters of the
parametric ring. (u_1,..,u_m) are the parameteres
of the hyper-surfaces, that are considered as variables of the parametric ring. Having computed an envelop
component E of a family of hyper-surfaces F,
with constraints C, it returns the parameter values
of the associated tangent hyper-surface of the
family passing at one point of the envelop component E. Calling sequence: (s<m)
ring R=(0,x_1,..,x_n),(u_1,..,u_m),lp;
poly F=F(x_1,..,x_n,u_1,..,u_m);
ideal C=g_1(u_1,..u_m),..,g_s(u_1,..u_m);
poly E(x_1,..,x_n);
AssocTanToEnv(F,C,E,[,options]);

Return:
list [lpp,basis,segment]. The basis determines
the associated tangent hyper-surface at a point of
the envelop component E. The segment is given in Prep. See book
A. Montes. "The Groebner Cover": (Discussing Parametric Polynomial Systems).

Note:
grobcov is called internally.

Example:
 
LIB "grobcov.lib";
if(defined(R)){kill R;}
ring R=(0,y0,x,y),(t),dp;
short=0;
poly F=(x-5*t)^2+y^2-3^2*t^2;
F;
==> 16*t^2+(-10*x)*t+(x^2+y^2)
ideal C;
C;
==> C[1]=0
def Env=envelop(F,C);
Env;
==> [1]:
==>    [1]:
==>       _[1]=(3*x+4*y)
==>    [2]:
==>       [1]:
==>          _[1]=1
==>    [3]:
==>       [1]:
==>          1
==>       [2]:
==>          Special
==>       [3]:
==>          _[1]=0
==> [2]:
==>    [1]:
==>       _[1]=(3*x-4*y)
==>    [2]:
==>       [1]:
==>          _[1]=1
==>    [3]:
==>       [1]:
==>          1
==>       [2]:
==>          Special
==>       [3]:
==>          _[1]=0
// E is a component of the envelop:
ideal E=Env[1][1];
E;
==> E[1]=(3*x+4*y)
def A=AssocTanToEnv(F,C,E);
A;
==> [1]:
==>    [1]:
==>       _[1]=t
==>    [2]:
==>       _[1]=12*t+(5*y)
==>    [3]:
==>       [1]:
==>          [1]:
==>             _[1]=(3*x+4*y)
==>          [2]:
==>             [1]:
==>                _[1]=1
// The basis of the parameter values of the associated
// tangent component is
A[1][2][1];
==> 12*t+(5*y)
// Thus t=(5/12)*y0 and the associated tangent component at (x0,y0) is
subst(F,t,(5/12)*y0);
==> (50*y0^2-75*y0*x+18*x^2+18*y^2)/18
// EXAMPLE
if(defined(R)){kill R;}
ring R=(0,x,y,z),(x1,y1,z1),dp;
short=0;
poly F=(x-x1)^2+(y-y1)^2+(z-z1)^2-1;
ideal C=(x1)^2+(y1)^2-1;
short=0;
def Env=envelop(F,C); Env;
==> [1]:
==>    [1]:
==>       _[1]=(x^2+y^2-4)
==>    [2]:
==>       [1]:
==>          _[1]=1
==>    [3]:
==>       [1]:
==>          2
==>       [2]:
==>          Normal
==>       [3]:
==>          _[1]=x1^2+y1^2-1
==> [2]:
==>    [1]:
==>       _[1]=(y)
==>       _[2]=(x)
==>    [2]:
==>       [1]:
==>          _[1]=1
==>    [3]:
==>       [1]:
==>          1
==>       [2]:
==>          Accumulation
def E=Env[1][1];
AssocTanToEnv(F,C,E);
==> [1]:
==>    [1]:
==>       _[1]=z1
==>       _[2]=y1
==>       _[3]=x1
==>    [2]:
==>       _[1]=z1+(-z)
==>       _[2]=2*y1+(-y)
==>       _[3]=2*x1+(-x)
==>    [3]:
==>       [1]:
==>          [1]:
==>             _[1]=(x^2+y^2-4)
==>          [2]:
==>             [1]:
==>                _[1]=1
def E1=Env[2][1];
AssocTanToEnv(F,C,E1);
==> [1]:
==>    [1]:
==>       _[1]=z1
==>       _[2]=x1^2
==>    [2]:
==>       _[1]=z1+(-z)
==>       _[2]=x1^2+y1^2-1
==>    [3]:
==>       [1]:
==>          [1]:
==>             _[1]=(y)
==>             _[2]=(x)
==>          [2]:
==>             [1]:
==>                _[1]=1