| LIB "sing.lib";
int p = printlevel;
printlevel = 1;
ring r = 32003,(x,y,z),(c,ds);
ideal i = xy,xz,yz;
module T = T_1(i);
==> // dim T_1 = 3
vdim(T); // Tjurina number = dim_K(T_1), should be 3
==> 3
list L=T_1(i,"");
==> // dim T_1 = 3
module kB = kbase(L[1]);
print(matrix(L[2])*matrix(kB)); // basis of 1st order miniversal deformation
==> 0,0,0,
==> z,0,0,
==> 0,y,z
show(L[2]); // presentation of normal bundle
==> // module, 6 generator(s)
==> [x]
==> [y,z]
==> [0,x,y]
==> [0,z]
==> [0,0,y]
==> [0,0,z]
print(L[3]); // relations of i
==> z, 0,
==> -y,y,
==> 0, -x
print(transpose(matrix(L[3]))*matrix(L[2])); // should be 0 (mod i)
==> xz,0, -xy,-yz,0, 0,
==> 0, yz,0, yz, -xy,-xz
printlevel = p;
|