D.12.4.1 ishyper | | test, if y^2+h(x)y=f(x) is hyperelliptic |
D.12.4.2 isoncurve | | test, if point P is on C: y^2+h(x)y=f(x) |
D.12.4.3 chinrestp | | compute polynom x, s.t. x=b[i] mod moduli[i] |
D.12.4.4 norm | | norm of a(x)-b(x)y in IF[C] |
D.12.4.5 multi | | (a(x)-b(x)y)*(c(x)-d(x)y) in IF[C] ratrep (P,h,f) returns polynomials a,b, s.t. div(a,b)=P |
D.12.4.6 divisor | | computes divisor of a(x)-b(x)y |
D.12.4.7 gcddivisor | | gcd of the divisors p and q |
D.12.4.8 semidiv | | semireduced divisor of the pair of polys D[1], D[2] |
D.12.4.9 cantoradd | | adding divisors of the hyperell. curve y^2+h(x)y=f(x) |
D.12.4.10 cantorred | | returns reduced divisor which is equivalent to D |
D.12.4.11 double | | computes 2*D on y^2+h(x)y=f(x) |
D.12.4.12 cantormult | | computes m*D on y^2+h(x)y=f(x) |