Home Online Manual
Top
Back: resolutionInLocalization
Forward: isAface
FastBack:
FastForward:
Up: Singular Manual
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.15.18 gitfan_lib

Library:
gitfan.lib
Purpose:
Compute GIT-fans.

Authors:
Janko Boehm, boehm at mathematik.uni-kl.de
Simon Keicher, keicher at mail.mathematik.uni-tuebingen.de
Yue Ren, ren at mathematik.uni-kl.de

Overview:
This library allows you to calculate GIT-fans, torus orbits and GKZ-fans.

In provides features to make use of symmetries of the torus action under consideration.

The main procedure is GITfan which can be directly applied to an ideal and a grading matrix encoding the torus action, and returns a fan, the associated GIT-fan. We also provide various procedures implementing substeps of the algorithm to deal with large computations.

The library uses the package 'gfanlib' by Anders N. Jensen.

For notation, background, and algorithms see [BKR16].

Functions produce debug output if printlevel is positive.

Elements of the symmetric group Sn of type permutation can be created by the function permutationFromIntvec.
The images of 1,...,n can be obtained by permutationToIntvec. Composition of permutations can be done by the *-Operator, also powers can be computed in the usual way.

References:
[BKR16] J. Boehm, S. Keicher, Y. Ren: Computing GIT-Fans with Symmetry and the Mori Chamber Decomposition of M06bar, https://arxiv.org/abs/1603.09241

Types:
permutation; Permutation in map representation.

Procedures:

D.15.18.1 isAface  Checks whether the given face is an a-face.
D.15.18.2 afaces  Returns a list of intvecs that correspond to the set of all a-faces, optionally for given list of simplex faces.
D.15.18.3 fullDimImages  Finds the afaces which have a full-dimensional projection.
D.15.18.4 minimalAfaces  compute the minimal a-faces among the a-faces with full dimensional projection.
D.15.18.5 orbitCones  Returns the list of all orbit cones.
D.15.18.6 GITcone  Returns the GIT-cone containing the given weight vector.
D.15.18.7 GITfan  Compute GIT-fan.
D.15.18.8 GITfanFromOrbitCones  Compute GIT-fan from orbit cones.
D.15.18.9 GITfanParallel  Compute GIT-fan in parallel from orbit cones.
D.15.18.10 GKZfan  Returns the GKZ-fan of the matrix Q.
D.15.18.11 movingCone  Compute the moving cone.
D.15.18.12 computeAfaceOrbits  Compute orbits of a-faces under a permutation group action.
D.15.18.13 minimalAfaceOrbits  Find the minimal a-face orbits.
D.15.18.14 orbitConeOrbits  Project the a-face orbits to orbit cone orbits.
D.15.18.15 minimalOrbitConeOrbits  Find the minimal orbit cone orbits.
D.15.18.16 intersectOrbitsWithMovingCone  Intersect orbit cone orbits with moving cone.
D.15.18.17 groupActionOnQImage  Determine the induced group action in the target of the grading matrix.
D.15.18.18 groupActionOnHashes  Determine the induced group action on the set of orbit cones.
D.15.18.19 storeActionOnOrbitConeIndices  Write the group action on the set of orbit cones to a file.
D.15.18.20 permutationFromIntvec  Create a permutation from an intvec of images.
D.15.18.21 permutationToIntvec  Return the intvec of images.
D.15.18.22 evaluateProduct  Evaluate a list of products of group elements in terms of a given representation of the elements as permutations.
D.15.18.23 GITfanSymmetric  Compute GIT-fan from orbit cones by determining a minimal representing set for the orbits of maximal dimensional GIT-cones.
D.15.18.24 GITfanParallelSymmetric  Compute GIT-fan in parallel from orbit cones by determining a minimal representing set for the orbits of maximal dimensional GIT-cones.
D.15.18.25 bigintToBinary  Convert bigint into a sparse binary represenation specifying the indices of the one-entries
D.15.18.26 binaryToBigint  Convert sparse binary represenation specifying the indices of the one-entries to bigint
D.15.18.27 applyPermutationToIntvec  Apply permutation to a set of integers represented as an intvec
D.15.18.28 hashToCone  Convert a bigint hash to a GIT-cone
D.15.18.29 hashesToFan  
D.15.18.30 gitCone  Returns the GIT-cone around the given weight vector w