Home Online Manual
Top
Back: nfmodstd_lib
Forward: nfmodStd
FastBack:
FastForward:
Up: nfmodstd_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.15.27.1 chinrempoly

Procedure from library nfmodstd.lib (see nfmodstd_lib).

Usage:
chinrempoly(l, m); l list, m list

Return:
a polynomial (resp. ideal/module) which is congruent to l[i] modulo m[i] for all i

Note:
The procedure applies chinese remaindering to the first argument w.r.t. the moduli given in the second. The elements in the first list must be of the same type which can be polynomial, ideal, or module. The moduli must be of type polynomial. The elements in the second list must be distinct and co-prime.

Example:
 
LIB "nfmodstd.lib";
ring rr=97,x,dp;
poly f=x^7-7*x + 3;
ideal J=factorize(f,1);
J;
==> J[1]=x+37
==> J[2]=x3-46x2+17x-8
==> J[3]=x3+9x2+20x-20
list m=J[1..ncols(J)];
list l= x^2+2*x+3, x^2+5, x^2+7;
ideal I=chinrempoly(l,m);
I;
==> I[1]=24x6+19x4-20x3+43x2-16x+45
ring s=0,x,dp;
list m= x^2+2*x+3, x^3+5, x^4+x^3+7;
list l=x^3 + 2, x^4 + 7, x^5 + 11;
ideal I=chinrempoly(l,m);
I;
==> I[1]=18113/107610x8+5826/17935x7-5257/107610x6+3975/7174x5+246151/107610x\
   4+131573/53805x3-910/633x2-36239/21522x+146695/7174
int p=prime(536546513);
ring r = p, (x,y,a), (dp(2),dp(1));
poly minpolynomial = a^2+1;
ideal kf=factorize(minpolynomial,1); //return factors without multiplicity
kf;
==> kf[1]=a-222052315
==> kf[2]=a+222052315
ideal k=(a+1)*x2+y, 3x-ay+ a+2;
option(redSB);
ideal k1=k,kf[1];
ideal k2 =k,kf[2];
k1=std(k1);
k2=std(k2);
list l=k1,k2;
list m=kf[1..ncols(kf)];
ideal I=chinrempoly(l,m);
I=simplify(I,2);
I;
==> I[1]=x-178848838ya+178848838a-178848837
==> I[2]=y2-268273248ya+268273250y-4a-3
l = module(k1[2..ncols(k1)]), module(k2[2..ncols(k2)]);
module M = chinrempoly(l,m);
M;
==> M[1]=x*gen(1)-178848838ya*gen(1)+178848838a*gen(1)-178848837*gen(1)
==> M[2]=y2*gen(1)-268273248ya*gen(1)+268273250y*gen(1)-4a*gen(1)-3*gen(1)
See also: chinrem.