Procedure from library schubert.lib (see schubert_lib).
Usage:
sumofquotient(M,F,#); M stack, F list, # list
Return:
number
Theory:
This is useful for the parallel computation of rationalCurve.
Example:
LIB "schubert.lib";
ring r = 0,x,dp;
variety P = projectiveSpace(4);
stack M = moduliSpace(P,2);
list F = fixedPoints(M);
sumofquotients(M,F);
==> 4876875/8
sumofquotients(M,F,list(5));
==> 4876875/8