|
7.5.13.0. appendWeight2Ord
Procedure from library ncpreim.lib (see ncpreim_lib).
- Usage:
- appendWeight2Ord(w); w an intvec
- Return:
- ring, the basering equipped with the ordering (a(w),<), where < is
the ordering of the basering.
Example:
| LIB "ncpreim.lib";
ring r = 0,(a,b,x,d),Dp;
intvec w = 1,2,3,4;
def r2 = appendWeight2Ord(w); // for a commutative ring
r2;
==> // coefficients: QQ
==> // number of vars : 4
==> // block 1 : ordering a
==> // : names a b x d
==> // : weights 1 2 3 4
==> // block 2 : ordering Dp
==> // : names a b x d
==> // block 3 : ordering C
matrix D[4][4];
D[1,2] = 3*a; D[1,4] = 3*x^2; D[2,3] = -x;
D[2,4] = d; D[3,4] = 1;
def A = nc_algebra(1,D);
setring A; A;
==> // coefficients: QQ
==> // number of vars : 4
==> // block 1 : ordering Dp
==> // : names a b x d
==> // block 2 : ordering C
==> // noncommutative relations:
==> // ba=ab+3a
==> // da=ad+3x2
==> // xb=bx-x
==> // db=bd+d
==> // dx=xd+1
w = 2,1,1,1;
def B = appendWeight2Ord(w); // for a non-commutative ring
setring B; B;
==> // coefficients: QQ
==> // number of vars : 4
==> // block 1 : ordering a
==> // : names a b x d
==> // : weights 2 1 1 1
==> // block 2 : ordering Dp
==> // : names a b x d
==> // block 3 : ordering C
==> // noncommutative relations:
==> // ba=ab+3a
==> // da=ad+3x2
==> // xb=bx-x
==> // db=bd+d
==> // dx=xd+1
|
|