Home Online Manual
Top
Back: leftOre
Forward: convertRightToLeftFraction
FastBack:
FastForward:
Up: olga_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document
7.5.23.0. rightOre
Procedure from library olga.lib (see olga_lib).

Usage:
rightOre(s, r, locType, locData), poly s, r, int locType, list/vector/intvec locData

Purpose:
compute right Ore data for a given tuple (s,r)

Assume:
s is in the denominator set determined via locType and locData

Return:
list

Note:
- the first entry of the list is a vector [ts,tr] such that r*ts=s*tr - the second entry of the list is a description of all choices for ts

Example:
 
LIB "olga.lib";
ring R = 0,(x,y,Dx,Dy),dp;
def S = Weyl();
setring S; S;
==> // coefficients: QQ
==> // number of vars : 4
==> //        block   1 : ordering dp
==> //                  : names    x y Dx Dy
==> //        block   2 : ordering C
==> // noncommutative relations:
==> //    Dxx=x*Dx+1
==> //    Dyy=y*Dy+1
// monoidal localization
poly g1 = x+3;
poly g2 = x*y;
list L = g1,g2;
poly g = g1^2*g2;
poly f = Dx;
list rm = rightOre(g, f, 0, L);
print(rm[1]);
==> [x^8*y^4+12*x^7*y^4+54*x^6*y^4+108*x^5*y^4+81*x^4*y^4,x^5*y^3*Dx+6*x^4*y^\
   3*Dx+8*x^4*y^3+9*x^3*y^3*Dx+36*x^3*y^3+36*x^2*y^3]
rm[2];
==> _[1]=x^8*y^4+12*x^7*y^4+54*x^6*y^4+108*x^5*y^4+81*x^4*y^4
g*rm[1][2]-f*rm[1][1];
==> 0
// geometric localization
ideal p = x-1, y-3;
f = Dx;
g = x^2+y;
list rg = rightOre(g, f, 1, p);
print(rg[1]);
==> [x^4+2*x^2*y+y^2,x^2*Dx+y*Dx+4*x]
rg[2];
==> _[1]=x^4+2*x^2*y+y^2
g*rg[1][2]-f*rg[1][1];
==> 0
// rational localization
intvec rat = 1;
f = Dx+Dy;
g = x;
list rr = rightOre(g, f, 2, rat);
print(rr[1]);
==> [x^2,x*Dx+x*Dy+2]
rr[2];
==> _[1]=x^2
g*rr[1][2]-f*rr[1][1];
==> 0