Home Online Manual
Top
Back: intersectpar
Forward: ConsLevels
FastBack:
FastForward:
Up: grobcov_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.2.4.21 ADGT

Procedure from library grobcov.lib (see grobcov_lib).

Usage:
ADGT(ideal H, ideal T, ideal H1,ideal T1[,options]);
H: ideal in Q[a][x] hypothesis
T: ideal in Q[a][x] thesis
H1: ideal in Q[a][x] negative hypothesis, only dependent on [a] T1: ideal in Q[a][x] negative thesis
of the Proposition (H and not H1) => (T and not T1)

Return:
The list [[1,S1],[2,S2],..],
S1, S2, .. represent the set of parameter values
that must be verified as supplementary
conditions for the Proposition to become a Theorem.
They are given by default in Prep.
If the proposition is generally true,
(the proposition is already a theorem), then
the generic segment of the internal grobcov
called is also returned to provide information
about the values of the variables determined
for every value of the parameters.
If the propsition is false for every values of the
parameters, then the emply list is returned.

Options:
An option is a pair of arguments: string,
integer. To modify the default options, pairs
of arguments -option name, value- of valid options
must be added to the call.
Option "rep",0-1: The default is ("rep",0)
and then the segments are given in canonical
P-representation.
Option ("rep",1) represents the segments
in canonical C-representation,
Option "gseg",0-1: The default is "gseg",1
and then when the proposition is generally true,
ADGT outputs a second element which is the
"generic segment" to provide supplementary information. With option "gseg",0 this is avoided.
Option "neg", 0,1: The default is "neg",0
With option "neg",0 Rabinovitch trick is used for negative hypothesis and thesis With option "neg",1 Difference of constructible sets is used instead.

Note:
The basering R, must be of the form Q[a][x],
(a=parameters, x=variables), and
should be defined previously. The ideals
must be defined on R.

Example:
 
LIB "grobcov.lib";
// Determine the supplementary conditions
// for the non-degenerate  triangle A(-1,0), B(1,0), C(x,y)
// to have an ortic non-degenerate isosceles triangle
if(defined(R)){kill R;}
ring R=(0,x,y),(x2,y2,x1,y1),lp;
// Hypothesis H: the triangle  A1(x1,y1), B1(x2,y2), C1(x,0), is the
// orthic triangle of ABC
ideal H=-y*x1+(x-1)*y1+y,
(x-1)*(x1+1)+y*y1,
-y*x2+(x+1)*y2-y,
(x+1)*(x2-1)+y*y2;
// Thesis T: the orthic triangle is isosceles
ideal T=(x1-x)^2+y1^2-(x2-x)^2-y2^2;
// Negative Hypothesis H1: ABC is non-degenerate
ideal H1=y;
// Negative Thesis T1: the orthic triangle is non-degenerate
ideal T1=x*(y1-y2)-y*(x1-x2)+x1*y2-x2*y1;
// Complementary conditions for the
// Proposition (H and not H1) => (T and not T1)
// to be true
ADGT(H,T,H1,T1);
==> [1]:
==>    [1]:
==>       1
==>    [2]:
==>       [1]:
==>          [1]:
==>             _[1]=(x^2-y^2-1)
==>          [2]:
==>             [1]:
==>                _[1]=(y)
==>                _[2]=(x-1)
==>             [2]:
==>                _[1]=(y)
==>                _[2]=(x+1)
==>             [3]:
==>                _[1]=(y^2+1)
==>                _[2]=(x)
==>       [2]:
==>          [1]:
==>             _[1]=(x)
==>          [2]:
==>             [1]:
==>                _[1]=(y)
==>                _[2]=(x)
==>             [2]:
==>                _[1]=(y-1)
==>                _[2]=(x)
==>             [3]:
==>                _[1]=(y+1)
==>                _[2]=(x)
==>             [4]:
==>                _[1]=(y^2+1)
==>                _[2]=(x)
// Now using diference of constructible sets for negative hypothesis and thesis
ADGT(H,T,H1,T1,"neg",1);
==> [1]:
==>    [1]:
==>       1
==>    [2]:
==>       [1]:
==>          [1]:
==>             _[1]=(x^2-y^2-1)
==>          [2]:
==>             [1]:
==>                _[1]=(y)
==>                _[2]=(x-1)
==>             [2]:
==>                _[1]=(y)
==>                _[2]=(x+1)
==>             [3]:
==>                _[1]=(y^2+1)
==>                _[2]=(x)
==>       [2]:
==>          [1]:
==>             _[1]=(x)
==>          [2]:
==>             [1]:
==>                _[1]=(y)
==>                _[2]=(x)
==>             [2]:
==>                _[1]=(y-1)
==>                _[2]=(x)
==>             [3]:
==>                _[1]=(y+1)
==>                _[2]=(x)
==>             [4]:
==>                _[1]=(y^2+1)
==>                _[2]=(x)
// The results are identical using both methods for the negative propositions
//  - Rabinovitch or
//  - DifConsLCSets
// EXAMPLE
// Automatic Theorem Proving.
// The nine points circle theorem.
// Vertices of the triangle: A(-2,0), B(2,0), C(2a,2b)
// Height foot: A1(x1,y1),
// Height foot: B1(x2,y2),
// Height foot: C1(2a,0)
// Middle point BC:  A2(a+1,b)
// Middle point CA:  B2 (a-1,b)
// Middle point AB:  C2(0,0)
// Ortocenter:   O(2x0,2y0)
// Middle point of A and O:  A3(x0-1,y0)
// Middle point of B and O:  B3(x0+1,y0)
// Middle point of C and O:  C3(x0+a,y0+b)
// Nine points circle: c:=(X-x3)^2+(Y-y3)^2-r2
if (defined(R1)){kill R1;}
ring R1=(0,a,b),(x1,y1,x2,y2,x0,y0,x3,y3,r2),dp;
short=0;
ideal H=-x1*b+(a-1)*y1+2*b,
(a-1)*x1+b*y1+2*a-2,
-x2*b+(a+1)*y2-2*b,
(a+1)*x2+b*y2-2*a-2,
-x0*y1+(x1+2)*y0-y1,
-x0*y2+(x2-2)*y0+y2;
ideal T=(x1-2*x3)^2+(y1-2*y3)^2-r2,
(a+1-2*x3)^2+(b-2*y3)^2-r2,
(x0-1-2*x3)^2+(y0-2*y3)^2-r2,
(x2-2*x3)^2+(y2-2*y3)^2-r2,
(a-1-2*x3)^2+(b-2*y3)^2-r2,
(x0+1-2*x3)^2+(y0-2*y3)^2-r2,
(2*a-2*x3)^2+4*y3^2-r2,
4*x3^2+4*y3^2-r2,
(x0+a-2*x3)^2+(y0+b-2*y3)^2-r2;
ADGT(H,T,b,1);
==> [1]:
==>    [1]:
==>       1
==>    [2]:
==>       [1]:
==>          [1]:
==>             _[1]=0
==>          [2]:
==>             [1]:
==>                _[1]=(a^2+2*a+b^2+1)
==>             [2]:
==>                _[1]=(a^2-2*a+b^2+1)
==>             [3]:
==>                _[1]=(b)
==> [2]:
==>    [1]:
==>       Generic segment
==>    [2]:
==>       [1]:
==>          _[1]=r2
==>          _[2]=y3
==>          _[3]=x3
==>          _[4]=y0
==>          _[5]=x0
==>          _[6]=y2
==>          _[7]=x2
==>          _[8]=y1
==>          _[9]=x1
==>       [2]:
==>          _[1]=(4*b^2)*r2+(-a^4-2*a^2*b^2+2*a^2-b^4-2*b^2-1)
==>          _[2]=(4*b)*y3+(a^2-b^2-1)
==>          _[3]=2*x3+(-a)
==>          _[4]=(b)*y0+(a^2-1)
==>          _[5]=x0+(-a)
==>          _[6]=(a^2+2*a+b^2+1)*y2+(-4*a*b-4*b)
==>          _[7]=(a^2+2*a+b^2+1)*x2+(-2*a^2-4*a+2*b^2-2)
==>          _[8]=(a^2-2*a+b^2+1)*y1+(4*a*b-4*b)
==>          _[9]=(a^2-2*a+b^2+1)*x1+(2*a^2-4*a-2*b^2+2)
==>       [3]:
==>          [1]:
==>             [1]:
==>                _[1]=0
==>             [2]:
==>                [1]:
==>                   _[1]=(a^2+2*a+b^2+1)
==>                [2]:
==>                   _[1]=(a^2-2*a+b^2+1)
==>                [3]:
==>                   _[1]=(b)
// Thus the nine point circle theorem is true for all real points excepting b=0.