|
D.5.5.1 BINresol
Procedure from library resbinomial.lib (see resbinomial_lib).
- Usage:
- BINresol(J); J ideal
- Return:
- E-resolution of singularities of a binomial ideal J in terms of the affine charts, see example
Example:
| LIB "resbinomial.lib";
ring r = 0,(x(1..2)),dp;
ideal J=x(1)^2-x(2)^3;
list B=BINresol(J);
B[1]; // list of final charts
==> [1]:
==> // coefficients: QQ
==> // number of vars : 2
==> // block 1 : ordering dp
==> // : names y(1) y(2)
==> // block 2 : ordering C
==> [2]:
==> // coefficients: QQ
==> // number of vars : 2
==> // block 1 : ordering dp
==> // : names y(1) y(2)
==> // block 2 : ordering C
==> [3]:
==> // coefficients: QQ
==> // number of vars : 2
==> // block 1 : ordering dp
==> // : names y(1) x(2)
==> // block 2 : ordering C
==> [4]:
==> // coefficients: QQ
==> // number of vars : 2
==> // block 1 : ordering dp
==> // : names x(1) y(2)
==> // block 2 : ordering C
B[2]; // list of all charts
==> [1]:
==> // coefficients: QQ
==> // number of vars : 2
==> // block 1 : ordering dp
==> // : names x(1) x(2)
==> // block 2 : ordering C
==> [2]:
==> // coefficients: QQ
==> // number of vars : 2
==> // block 1 : ordering dp
==> // : names y(1) y(2)
==> // block 2 : ordering C
==> [3]:
==> // coefficients: QQ
==> // number of vars : 2
==> // block 1 : ordering dp
==> // : names x(1) x(2)
==> // block 2 : ordering C
==> [4]:
==> // coefficients: QQ
==> // number of vars : 2
==> // block 1 : ordering dp
==> // : names y(1) y(2)
==> // block 2 : ordering C
==> [5]:
==> // coefficients: QQ
==> // number of vars : 2
==> // block 1 : ordering dp
==> // : names x(1) x(2)
==> // block 2 : ordering C
==> [6]:
==> // coefficients: QQ
==> // number of vars : 2
==> // block 1 : ordering dp
==> // : names y(1) x(2)
==> // block 2 : ordering C
==> [7]:
==> // coefficients: QQ
==> // number of vars : 2
==> // block 1 : ordering dp
==> // : names x(1) y(2)
==> // block 2 : ordering C
ring r = 2,(x(1..3)),dp;
==> // ** redefining r (ring r = 2,(x(1..3)),dp;) ./examples/BINresol.sing:7
ideal J=x(1)^2-x(2)^2*x(3)^2;
list B=BINresol(J);
==> // ** redefining B (list B=BINresol(J);) ./examples/BINresol.sing:9
B[2]; // list of all charts
==> [1]:
==> // coefficients: ZZ/2
==> // number of vars : 3
==> // block 1 : ordering dp
==> // : names x(1) x(2) x(3)
==> // block 2 : ordering C
==> [2]:
==> // coefficients: ZZ/2
==> // number of vars : 3
==> // block 1 : ordering dp
==> // : names y(1) y(2) y(3)
==> // block 2 : ordering C
==> [3]:
==> // coefficients: ZZ/2
==> // number of vars : 3
==> // block 1 : ordering dp
==> // : names x(1) x(2) x(3)
==> // block 2 : ordering C
==> [4]:
==> // coefficients: ZZ/2
==> // number of vars : 3
==> // block 1 : ordering dp
==> // : names x(1) x(2) x(3)
==> // block 2 : ordering C
==> [5]:
==> // coefficients: ZZ/2
==> // number of vars : 3
==> // block 1 : ordering dp
==> // : names x(1) y(2) y(3)
==> // block 2 : ordering C
==> [6]:
==> // coefficients: ZZ/2
==> // number of vars : 3
==> // block 1 : ordering dp
==> // : names x(1) x(2) x(3)
==> // block 2 : ordering C
==> [7]:
==> // coefficients: ZZ/2
==> // number of vars : 3
==> // block 1 : ordering dp
==> // : names x(1) y(2) y(3)
==> // block 2 : ordering C
==> [8]:
==> // coefficients: ZZ/2
==> // number of vars : 3
==> // block 1 : ordering dp
==> // : names x(1) x(2) x(3)
==> // block 2 : ordering C
==> [9]:
==> // coefficients: ZZ/2
==> // number of vars : 3
==> // block 1 : ordering dp
==> // : names x(1) y(2) x(3)
==> // block 2 : ordering C
==> [10]:
==> // coefficients: ZZ/2
==> // number of vars : 3
==> // block 1 : ordering dp
==> // : names y(1) x(2) x(3)
==> // block 2 : ordering C
==> [11]:
==> // coefficients: ZZ/2
==> // number of vars : 3
==> // block 1 : ordering dp
==> // : names x(1) x(2) y(3)
==> // block 2 : ordering C
==> [12]:
==> // coefficients: ZZ/2
==> // number of vars : 3
==> // block 1 : ordering dp
==> // : names y(1) x(2) x(3)
==> // block 2 : ordering C
|
|