Home Online Manual
Top
Back: isInvertibleLeftFraction
Forward: isZeroFraction
FastBack:
FastForward:
Up: olga_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document
7.5.20.0. invertLeftFraction
Procedure from library olga.lib (see olga_lib).

Usage:
invertLeftFraction(frac, locType, locData), vector frac, int locType, list/vector/intvec locData

Purpose:
invert a fraction in the specified localization

Assume:
frac is invertible in the loc. specified by locType and locData

Return:
vector

Note:
- returns the multiplicative inverse of frac in the localization specified by locType and locData,
- throws error if frac is not invertible (NOTE: this does NOT mean that the fraction is not invertible, it just means it could not be determined by the method listed above).

Example:
 
LIB "olga.lib";
ring R = 0,(x,y,Dx,Dy),dp;
def S = Weyl();
setring S; S;
==> // coefficients: QQ
==> // number of vars : 4
==> //        block   1 : ordering dp
==> //                  : names    x y Dx Dy
==> //        block   2 : ordering C
==> // noncommutative relations:
==> //    Dxx=x*Dx+1
==> //    Dyy=y*Dy+1
poly g1 = x+3;
poly g2 = x*y;
list L = g1,g2;
vector frac = [g1*g2, 17, 0, 0];
print(invertLeftFraction(frac, 0, L));
==> [17,x^2*y+3*x*y]
ideal p = x-1, y;
frac = [g1, x, 0, 0];
print(invertLeftFraction(frac, 1, p));
==> [x,x+3]
intvec rat = 1,2;
frac = [g1*g2, y, 0, 0];
print(invertLeftFraction(frac, 2, rat));
==> [y,x^2*y+3*x*y]