|
D.5.15.28 normalBundle
Procedure from library schubert.lib (see schubert_lib).
- Return:
- number
- Input:
- M is a moduli space of stable maps, G is a graph
- Output:
- a number corresponding to the normal bundle on a moduli space of
stable maps at a graph
hypersurfaces
Example:
| LIB "schubert.lib";
ring r = 0,x,dp;
variety P = projectiveSpace(4);
stack M = moduliSpace(P,2);
def F = fixedPoints(M);
graph G = F[1][1];
number f = normalBundle(M,G);
f <> 0;
==> 1
| See also:
contributionBundle.
|