|
D.8.10.5 zeroSet
Procedure from library zeroset.lib (see zeroset_lib).
- Usage:
- zeroSet(I [,opt] ); I=ideal, opt=integer
- Purpose:
- compute the zero-set of the zero-dim. ideal I, in a finite extension
of the ground field.
- Return:
- ring, a polynomial ring over an extension field of the ground field,
containing a list 'theZeroset', a polynomial 'newA', and an
ideal 'id':
| - 'theZeroset' is the list of the zeros of the ideal I, each zero is an ideal.
- if the ground field is Q(b) and the extension field is Q(a), then
'newA' is the representation of b in Q(a).
If the basering contains a parameter 'a' and the minpoly remains unchanged
then 'newA' = 'a'.
If the basering does not contain a parameter then 'newA' = 'a' (default).
- 'id' is the ideal I in Q(a)[x_1,...] (a' substituted by 'newA')
|
- Assume:
- dim(I) = 0, and ground field to be Q or a simple extension of Q given
by a minpoly.
- Options:
- opt = 0: no primary decomposition (default)
opt > 0: primary decomposition
- Note:
- If I contains an algebraic number (parameter) then I must be
transformed w.r.t. 'newA' in the new ring.
Example:
| LIB "zeroset.lib";
ring R = (0,a), (x,y,z), lp;
minpoly = a2 + 1;
ideal I = x2 - 1/2, a*z - 1, y - 2;
def T = zeroSet(I);
setring T;
minpoly;
==> (4a4+4a2+9)
newA;
==> (1/3a3+5/6a)
id;
==> id[1]=(1/3a3+5/6a)*z-1
==> id[2]=y-2
==> id[3]=2*x2-1
theZeroset;
==> [1]:
==> _[1]=(-1/3a3+1/6a)
==> _[2]=2
==> _[3]=(-1/3a3-5/6a)
==> [2]:
==> _[1]=(1/3a3-1/6a)
==> _[2]=2
==> _[3]=(-1/3a3-5/6a)
map F1 = basering, theZeroset[1];
map F2 = basering, theZeroset[2];
F1(id);
==> _[1]=0
==> _[2]=0
==> _[3]=0
F2(id);
==> _[1]=0
==> _[2]=0
==> _[3]=0
|
|