Home Online Manual
Top
Back: derivationMul
Forward: derivationNeq
FastBack:
FastForward:
Up: difform_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.15.3.40 derivationEqu

Procedure from library difform.lib (see difform_lib).

Usage:
phi == psi; phi,psi derivation

Return:
1, if phi and psi are equal - 0, otherwise

Remarks:
The images of the generators are compared compononentwise - this works since the structure lists of derivations are sorted the same way.

Note:
derivations can also be compared to polynomials

Example:
 
LIB "difform.lib";
ring R = 0,(u,v),lp;
diffAlgebra();
==> // The differential algebra Omega_R was constructed and the differential \
   forms dDu, dDv, du, dv are available.
list L_1; L_1[1] = list(dv,du); L_1[2] = list(u,-v);
/////////////////
// Derivations //
/////////////////
derivation phi_1 = L_1; phi_1;
==>  Omega_R^1 --> R
==>        du |--> -v
==>        dv |--> u
==> 
==> 
derivation phi_poly = u*v; phi_poly;
==>  Omega_R^1 --> R
==>        du |--> uv
==>        dv |--> uv
==> 
==> 
///////////////////////////////
// Comparison of derivations //
///////////////////////////////
phi_1 == phi_1;
==> 1
phi_1 == phi_poly;
==> 0
phi_poly == u*v;
==> 1
kill Omega_R,du,dv,phi_1,phi_poly;
See also: derivationNeq.