|
D.15.3.40 derivationEqu
Procedure from library difform.lib (see difform_lib).
- Usage:
- phi == psi; phi,psi derivation
- Return:
- 1, if phi and psi are equal - 0, otherwise
- Remarks:
- The images of the generators are compared compononentwise - this
works since the structure lists of derivations are sorted the same way.
- Note:
- derivations can also be compared to polynomials
Example:
| LIB "difform.lib";
ring R = 0,(u,v),lp;
diffAlgebra();
==> // The differential algebra Omega_R was constructed and the differential \
forms dDu, dDv, du, dv are available.
list L_1; L_1[1] = list(dv,du); L_1[2] = list(u,-v);
/////////////////
// Derivations //
/////////////////
derivation phi_1 = L_1; phi_1;
==> Omega_R^1 --> R
==> du |--> -v
==> dv |--> u
==>
==>
derivation phi_poly = u*v; phi_poly;
==> Omega_R^1 --> R
==> du |--> uv
==> dv |--> uv
==>
==>
///////////////////////////////
// Comparison of derivations //
///////////////////////////////
phi_1 == phi_1;
==> 1
phi_1 == phi_poly;
==> 0
phi_poly == u*v;
==> 1
kill Omega_R,du,dv,phi_1,phi_poly;
| See also:
derivationNeq.
|