D.15.11.1 id | | return a nxn identity Matrix |
D.15.11.2 zero | | return a nxm zero Matrix |
D.15.11.3 freeModule | | creating a graded free module |
D.15.11.4 makeMatrix | | creating a Matrix with graded target and source if the matrix is homogeneous. If # is set to 1, makeMatrix ignores the grading of source & target. |
D.15.11.5 makeIdeal | | creates an Ideal from an given ideal, is used to compute a resolution of the ideal |
D.15.11.6 Target | | return target of the Matrix |
D.15.11.7 Source | | return source of the Matrix |
D.15.11.8 printMatrix | | print a Matrix |
D.15.11.9 printFreeModule | | print a FreeModule |
D.15.11.10 printResolution | | print a Resolution |
D.15.11.11 printModule | | print a Module |
D.15.11.12 printHom | | print a Homomorphism |
D.15.11.13 mRes | | return a minimized graded Resolution |
D.15.11.14 sRes | | return a graded Resolution computet with Schreyer's method |
D.15.11.15 Res | | return a graded Resolution |
D.15.11.16 Betti | | return the Betti-Matrix of the Resolution |
D.15.11.17 printBetti | | prints the Betti-matrix of the Resolution |
D.15.11.18 SetDeg | | sets an own graduatuation for the monomials |
D.15.11.19 Deg | | same as deg, but can be used with an own graduation |
D.15.11.20 Degree | | return list with degrees of the module |
D.15.11.21 Degrees | | return list with degrees of the module |
D.15.11.22 subquotient | | return a Module, the subquotient of the two Matrices |
D.15.11.23 coker | | return a Module, the cokernel of the Matrix |
D.15.11.24 image | | return a Module, the image of the Matrix |
D.15.11.25 Ker | | return a Module, the kernel of the Matrix |
D.15.11.26 compareModules | | return 0 or 1, compares the two Modules up to isomorphism |
D.15.11.27 addModules | | return a Module, sum of the two Modules |
D.15.11.28 homomorphism | | creates a R-Modul-Homomorphism |
D.15.11.29 target | | return a Module, target of the Homomorphism |
D.15.11.30 source | | return a Module, source of the Homomorphism |
D.15.11.31 compareMatrix | | return 0 or 1, compares two Matrices |
D.15.11.32 freeModule2Module | | converts a FreeModule into a Module |
D.15.11.33 makeVector | | creates Vector in the given Module |
D.15.11.34 netVector | | prints Vector |
D.15.11.35 netMatrix | | prints Matrix |
D.15.11.36 presentation | | converts M as a Subquotient to the Coker of a matrix C |
D.15.11.37 tensorMatrix | | computes tensorproduct of two Matrices |
D.15.11.38 tensorModule | | computes tensorproduct of two Modules |
D.15.11.39 tensorModFreemod | | computes tensorproduct of Module and FreeModule |
D.15.11.40 tensorFreemodMod | | computes tensorproduct of FreeModule and Module |
D.15.11.41 tensorFreeModule | | computes tensorproduct ot two FreeModules |
D.15.11.42 tensorProduct | | computes tensorproduct |
D.15.11.43 pruneModule | | simplifies the presentation of a Module |
D.15.11.44 hom | | computes Hom(M,N) |
D.15.11.45 kerHom | | computes the kernel of a Homomorphism |
D.15.11.46 interpret | | interprets the Vector in some Module or abstract space |
D.15.11.47 interpretInv | | interprets a Vector or Homomorphism into the given Module |
D.15.11.48 reduceIntChain | | reduces a chain of interpretations to minimal size or # steps |
D.15.11.49 interpretElem | | interpret a Vector with # steps or until can't interpret further |
D.15.11.50 interpretList | | interpret a list of Vectors as far as possible |
D.15.11.51 compareVectors | | compares two Vectors with regard to the relations of their Module |
D.15.11.52 simplePrune | | simplify module |