|  |  5.1.83 lres 
 
See
 betti;
 fres;
 hres;
 ideal;
 int;
 minres;
 module;
 mres;
 res;
 sres.Syntax:lres (ideal_expression,int_expression)Type:resolution
Purpose:computes a free resolution of an ideal using LaScala's algorithm.
More precisely, let R be the basering and I be the given ideal.
Then lrescomputes a minimal free resolution of R/I
 If the int_expression k is not zero then the computation stops after
k steps and returns a list of modules
  , i=1..k. 
list L=lres(I,0);returns a list L of n modules (where n is the
number of variables of the basering) such that![${\tt L[i]}=M_i$](sing_135.png) in the above notation.Note:The ideal_expression has to be homogeneous.
Accessing single elements of a resolution may require that some partial
computations have to be finished and may therefore take some time.
Example:|  |   ring r=0,(x,y,z),dp;
  ideal I=xz,yz,x3-y3;
  def L=lres(I,0);
  print(betti(L),"betti");
==>            0     1     2
==> ------------------------
==>     0:     1     -     -
==>     1:     -     2     1
==>     2:     -     1     1
==> ------------------------
==> total:     1     3     2
==> 
  L[2];     // the first syzygy module of r/I
==> _[1]=-x*gen(1)+y*gen(2)
==> _[2]=-x2*gen(2)+y2*gen(1)+z*gen(3)
 | 
 |