Home Online Manual
Top
Back: puiseuxExpansion
Forward: tropicalCurve
FastBack:
FastForward:
Up: tropical_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.13.6.4 displayPuiseuxExpansion

Procedure from library tropical.lib (see tropical_lib).

Usage:
displayPuiseuxExpansion(puiseux[,#]); puiseux list, # list

Assume:
puiseux is the output of puiseuxExpansion; the optional parameter # can be the string 'subst'

Return:
none

Note:
- the procedure displays the output of the procedure puiseuxExpansion
- if the optional parameter 'subst' is given, then the expansion is substituted into the polynomial and the result is displayed
- if the base field had a parameter and a minimal polynomial, then the new base field will have a parameter and a minimal polynomial; var(2) is the old parameter and it is displayed how the old parameter can be computed from the new one

Example:
 
LIB "tropical.lib";
==> Welcome to polymake version
==> Copyright (c) 1997-2015
==> Ewgenij Gawrilow, Michael Joswig (TU Darmstadt)
==> http://www.polymake.org
ring r=0,(x,y),ds;
poly f=x2-y4+x5y7;
displayPuiseuxExpansion(puiseuxExpansion(f,3));
==> // ** name conflict var(1) and var(3): `x(1)`, rename to `@x(1)`in >>    \
     ring EXTENSIONRING = ring(RL);<<
==> in tropical.lib::findzerosAndBasictransform:6320
==> // ** redefining ggteiler (              int ggteiler=gcd(wneu[1],wneu[2]\
   );) tropical.lib::tropicalparametrise:5766
==> // ** redefining ggteiler (              int ggteiler=gcd(wneu[1],wneu[2]\
   );) tropical.lib::tropicalparametrise:5766
==> !!!! WARNING: The number of terms computed in the Puiseux expansion were
==> !!!!          not enough to find all branches of the curve singularity!
==> =============================
==> 1. Expansion:
==> 
==> The Puiseux expansion lives in the ring
==> Q[[t^(1/2)]]
==> 
==> The expansion has the form:
==> y=(1)*t^(1/2) + (1/4)*t^(14/2)
==> 
==> =============================
==> 2. Expansion:
==> 
==> The Puiseux expansion lives in the ring
==> Q[[t^(1/2)]]
==> 
==> The expansion has the form:
==> y=(-1)*t^(1/2) + (1/4)*t^(14/2)
==> 
==> =============================
==> 3. Expansion:
==> 
==> The Puiseux expansion lives in the ring
==> Q[a]/0[[t^(1/2)]]
==> 
==> The expansion has the form:
==> y=(a)*t^(1/2) + (1/4)*t^(14/2)
==>