|
D.15.3.18 PartitionVar
Procedure from library finitediff.lib (see finitediff_lib).
- Usage:
- PartitionVar(f); f a poly in the basering;
- Return:
- type poly; gives back a list L=f1,f2 obtained by the partition of f into two parts f1,f2 with deg_var_n(f1) >0 deg_var_n(f2)=0
Example:
| LIB "finitediff.lib";
list D="Ut","Ux","Uy","U";
list V="t","x","y";
list P="a","b";
setinitials(V,D,P);////does not show the ring, since there is no output
basering;///does show the ring
==> // coefficients: QQ(I, T, Px, Py, Cx, Cy, Sx, Sy, a, b, dt, dx, dy)
==> // number of vars : 8
==> // block 1 : ordering c
==> // block 2 : ordering lp
==> // : names i t x y cx cy sx sy
==> // quotient ring from ideal
==> _[1]=cy^2+sy^2-1
==> _[2]=cx^2+sx^2-1
==> _[3]=i^2+1
poly f=t**3*cx**2-cy**2*dt+i**3*sx;
PartitionVar(f,1); ////i is the first variable
==> [1]:
==> i^3*sx
==> [2]:
==> t^3*cx^2+(-dt)*cy^2
|
|