Home Online Manual
Top
Back: modfWalk
Forward: multigrading_lib
FastBack:
FastForward:
Up: modwalk_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.15.9.4 modfrWalk

Procedure from library modwalk.lib (see modwalk_lib).

Return:
a standard basis of I

Note:
The procedure computes a standard basis of I (over the rational numbers) by using modular methods.

Example:
 
LIB "modwalk.lib";
ring R1 = 0, (x,y,z,t), dp;
ideal I = 3x3+x2+1, 11y5+y3+2, 5z4+z2+4;
I = std(I);
ring R2 = 0, (x,y,z,t), lp;
ideal I = fetch(R1, I);
int radius = 2;
ideal J = modfrWalk(I,radius);
J;
==> J[1]=z4+1/5z2+4/5
==> J[2]=y5+1/11y3+2/11
==> J[3]=x3+1/3x2+1/3
ring S1 = 0, (a,b,c,d), Dp;
ideal I = 5b2, ac2+9d3+3a2+5b, 2a2c+7abd+bcd+4a2, 2ad2+6b2d+7c3+8ad+4c;
I = std(I);
ring S2 = 0, (c,d,b,a), lp;
ideal I = fetch(S1,I);
// I is assumed to be a Dp-Groebner basis.
// We compute a lp-Groebner basis.
ideal J = modfrWalk(I,radius,"Dp");
J;
==> J[1]=a25+16a24+96a23+256a22+256a21+256/9a20+1024/3a19+2048a18+65536/9a17+\
   32768/3a16+16384/81a15+131072/81a14+1048576/81a13+1048576/27a12+1048576/9\
   a11
==> J[2]=ba11+1522867351997104938459/91668001658017308797687087104a24+4293036\
   9782248629690765/91668001658017308797687087104a23+80925218629630777478637\
   /22917000414504327199421771776a22+7108535670237178684767/2864625051813040\
   899927721472a21-3255817194541612658349/89519532869157528122741296a20+5380\
   8965391546362724459/358078131476630112490965184a19+1534729815590907963215\
   01/358078131476630112490965184a18-260815719913165309506063/44759766434578\
   764061370648a17-1485276141860757031491027/89519532869157528122741296a16-4\
   92332725360316960775/22379883217289382030685324a15+7423992361030571232440\
   /16784912412967036523013993a14-17640364913371983121693/167849124129670365\
   23013993a13-37723213977586186442564/5594970804322345507671331a12+92047580\
   41857159721472414/5594970804322345507671331a11
==> J[3]=b2a6-1275460856846934902527/2619112706933760ba13-9203207900045442436\
   039/4583447237134080ba12-86229451659721876411/6261539941440ba11-63/2ba10-\
   176103105371/907641397248a21-306836641361771/103471119286272a20-556810728\
   2265313/181074458750976a19+463053737062394039071/32593402575175680a18+233\
   493474751858876283/2037087660948480a17+66864105293320847653/2910125229926\
   40a16-2870620980805387/101854383047424a15-9651151354818523/25463595761856\
   a14-471264260028168789475/611126298284544a13-489585210177544137565/152781\
   574571136a12-4323891804194718805849/190976968213920a11+4/7a6
==> J[4]=b3a5+1165198340059361507/60324030330315296b2a8+2834258341382482451/3\
   3932267060802354b2a7-3535202147650393/45243022747736472b2a6-1743263488518\
   66272086637/108100662351925010432ba13-180877903989284763838711/2702516558\
   7981252608ba12-2783949606995368438959121/60806622572957818368ba11+7423924\
   5100658253/30162015165157648ba10+4/7ba5+82576115266283735625891/172961059\
   7630800166912a18+2949131532722419989261/7721475882280357888a17+8257374787\
   8379091193883/108100662351925010432a16-194476798666289267/270251655879812\
   52608a15+10816123814459571297/6756291396995313152a14-13707944038216024518\
   9169/54050331175962505216a13-143935810252288492483523/1351258279399062630\
   4a12-108976370407053801898907/1447776727927567104a11+9/2a10+18a9+11651983\
   40059361507/105567053078051768a8+5668516682764964902/118762934712808239a7\
   -3535202147650393/79175289808538826a6
==> J[5]=b4-63/2b3a4+53590985045967705613474269749/1407238979545595225088b2a8\
   +11625419776309240542435260807/58634957481066467712b2a7+12739505342603800\
   3554252983797/175904872443199403136b2a6+4/7b2-761164231440237277536357328\
   493047/700492292040474067599360ba13-104521491576210733019159653207691/250\
   17581858588359557120ba12-11826338279466524349922531923473911/394026914272\
   766663024640ba11+286749359828001390655523145503/39089971654044311808ba10-\
   61261515/8ba9-525086793/32ba8+3969/16ba7-19845/4ba6+9/2ba5+45295478141475\
   95860677850296017/138368847810464013352960a18+247345844501521328455296898\
   6663/9729059611673250938880a17+324025940290811430696988658749687/70049229\
   2040474067599360a16-4286410117811597590771586510563/350246146020237033799\
   68a15+4054710919870705842300540149/2918717883501975281664a14-394300742086\
   35887294045314648189/23349743068015802253312a13-1139723514755969617170188\
   24182045/17512307301011851689984a12-3226716701597602362857429388525683/65\
   671152378794443837440a11+771901337907/64a10-1701/4a9+80528689834593164587\
   767860213/2462668214204791643904a8+11625165236461787969048941667/10261117\
   5591866318496a7+127391998947868572673617154117/307833526775598955488a6
==> J[6]=da+13042589597338317401292876694323783641/32769687632608435019205956\
   084751360b8-339347956624707128686162624470779591/136540365135868479246691\
   48368646400b7a+44776090034814931064318387941081165483/3276968763260843501\
   9205956084751360b7+72711086789965200830753309360861163/341350912839671198\
   1167287092161600b6a2+17945571338576304647577664032291913/1092322921086947\
   833973531869491712b6a+1005252013115630519751071456639664155699/5734695335\
   70647612836104231483148800b6+9615448034722990303485382435238901/136540365\
   13586847924669148368646400b5a3+663547630395349792235158387078347149/13654\
   036513586847924669148368646400b5a2-10588152408989285294663152330377654/37\
   3352560918390372940172025705175b5a+8954607782583032024373974051595847951/\
   5734695335706476128361042314831488b5-16768783292422657909931339309776827/\
   6827018256793423962334574184323200b4a4+507941899552434600769579126963767/\
   170675456419835599058364354608080b4a3+33005810917176973093954466999277846\
   9/6827018256793423962334574184323200b4a2+64107680452610290564228851734203\
   787/3413509128396711981167287092161600b4a+1376877864134098113390589464572\
   831613/853377282099177995291821773040400b4-643284910890587948236877864337\
   714771/9557825559510793547268403858052480b3a5-130190339942501750272181116\
   13508381/11947281949388491934085504822565600b3a4+137363543353185575764076\
   8919319843/3413509128396711981167287092161600b3a3+66354763039534979223515\
   8387078347149/23894563898776983868171009645131200b3a2-1380791010410641347\
   641955610911797/170675456419835599058364354608080b3a+30455774007493462026\
   8172466495764041/682701825679342396233457418432320b3+57088298465273022117\
   56158284190858113/95578255595107935472684038580524800b2a6+188328905241473\
   4766990421180196597/5973640974694245967042752411282800b2a5-20182594001309\
   76681444622383138147/11947281949388491934085504822565600b2a4+725631285074\
   90657252797018137681/42668864104958899764591088652020b2a3+352799606098503\
   36937362983980868571/1706754564198355990583643546080800b2a2+9160576385145\
   641871627802519827657/1706754564198355990583643546080800b2a+5063824837275\
   183915708779051981113317/11947281949388491934085504822565600b2+2139710638\
   608916733916466261891227/1365403651358684792466914836864640ba8-2207819314\
   4537153891260371881262339/546161460543473916986765934745856ba7-5451366058\
   15586548522667378314077621/3413509128396711981167287092161600ba6-65631655\
   441612907465368619382679107/1706754564198355990583643546080800ba5-189/200\
   ba4-13233263602544734530107233305922887/682701825679342396233457418432320\
   0a9-3555188132635967197804852869818541/1365403651358684792466914836864640\
   a8+230691784778909201021851072404959103/477891277975539677363420192902624\
   00a7-2239172271256758942944178285566542047/238945638987769838681710096451\
   31200a6+9/5a4
==> J[7]=db2+27168629881138998278214605101276770835/1800336095813001708473756\
   2811777413434dba+491471906637994374111562338884716187596/4500840239532504\
   2711843907029443533585da2+2869014504205069356631324068220712761/300056015\
   9688336180789593801962902239da+4/7d-1897077401044693056678038097144471820\
   99/34292116110723842066166786308147454160b7a-5658327819535712436466574993\
   330286600457/122471843252585150236309951100526622000b7+113182841765429901\
   32449993783459998727469/2571908708304288154962508973111059062000b6a2-2253\
   0934741604865857767754519577491811561/17146058055361921033083393154073727\
   08000b6a-28490909495949003753054905391701315934163/5143817416608576309925\
   01794622211812400b6+163276752511472685450681124222320969/4898873730103406\
   0094523980440210648800b5a3+1147567905764537825599187468312120724677/12859\
   5435415214407748125448655552953100b5a2-4912488558205679461828306619738387\
   29409/60011203193766723615791876039258044780b5a-2432707710215176002654632\
   048907145876763/45926941219719431338616231662697483250b5-3344421008663233\
   279970959194674706231/12247184325258515023630995110052662200b4a4-14300645\
   742587052800896932744188700663/6123592162629257511815497555026331100b4a3+\
   18686441795456071650849593173135040994539/4500840239532504271184390702944\
   353358500b4a2-22563973604244056496552722465133853468563/15002800798441680\
   90394796900981451119500b4a-28424924011974492068513527513639082672303/4500\
   84023953250427118439070294435335850b4-16868448210344714519204977303940182\
   9737/12247184325258515023630995110052662200b3a5-8054343150103979756088591\
   5156427564921/85730290276809605165416965770368635400b3a4-2021296188976840\
   1048967087882194009871/21432572569202401291354241442592158850b3a3+1147567\
   905764537825599187468312120724677/225042011976625213559219535147217667925\
   b3a2-8615460449031389729000767207411187066/300056015968833618078959380196\
   2902239b3a-17082924484405326727765123704709182473311/11252100598831260677\
   96097675736088339625b3+58378083696210014254623732708487441906557/24004481\
   27750668944631675041570321791200b2a6+730752004376098538134949140639236486\
   3/75014003992208404519739845049072555975b2a5-1422484057185129510002160996\
   280908909/8573029027680960516541696577036863540b2a4+498866956969510836132\
   1884554144242302/10716286284601200645677120721296079425b2a3+1432100606202\
   736932633547014514099566/1530898040657314377953874388756582775b2a2-922327\
   03946462233205459960859960061737/21432572569202401291354241442592158850b2\
   a-1350425644190475256379626173122707114783/750140039922084045197398450490\
   72555975b2-32293044481548109001440278438930613005987/30005601596883361807\
   89593801962902239000ba7+32682158823966231260410559538958529214519/3000560\
   159688336180789593801962902239000ba6-570641550756452819672611948091956948\
   9863/750140039922084045197398450490725559750ba5+3153694723460303096873813\
   53216972006239/150028007984416809039479690098145111950ba4-27/50ba3-156464\
   120892409756516976517553184828379/85730290276809605165416965770368635400a\
   8-4055993575064692139179730619963358700739/150028007984416809039479690098\
   145111950a7-3837465521578008641979577565856688937979/12002240638753344723\
   1583752078516089560a6+1474415719913983122334687016654148562788/7501400399\
   2208404519739845049072555975a5+25821130537845624209681916613986414849/150\
   02800798441680903947969009814511195a4+36/35a3
==> J[8]=d2
==> J[9]=ca-80796665/1042771968d2b2a+80796665/521385984d2ba-456425375/6069043\
   2d2a-3048690575/30345216d2+91285075/182071296db4a+35/9216db4-1088785/5689\
   728db3a2+2258752616171/182071296db3a+24027/2528768db3-8162999/79656192db2\
   a3-6539063/79656192db2a2+25495277/45517824db2a+5095/1264384db2-5243/15804\
   8dba4-753114969703/1486915584dba3-753467060575/2230373376dba2+30870844232\
   377/2230373376dba+24027/4425344db-7/256da5+5/96da3+342228711385/101380608\
   da2+342235311685/25345152da+2645/2489256d-68441518085/57931776b6+8617/189\
   6576b5a-752908955671/318624768b5+7/256b4a2-2163/79024b4a-752734601911/111\
   5186688b4+529/316096b3a3+7/128b3a2-12811/59268b3a-752421061495/557593344b\
   3+311787/632192b2a4+529/158048b2a3+1/64b2a2-309/19756b2a+309/4939b2+68441\
   518085/22529024ba5+752978795959/61954816ba4+529/553168ba3+1/32ba2-1/8ba+1\
   /2b+3/32a6+68445742277/11264512a5+68447062337/2816128a4+529/276584a3
==> J[10]=cb-32663547/65203625ca+122451/1669212800d2b2a-122451/834606400d2ba+\
   15878499/166921280d2-23489436789/3338425600db4+1118544609/1669212800db3a2\
   -3063359313/260814500db3a-33610801623/16692128000db3+324051/4173032000db2\
   a3+4795316673/16692128000db2a2+398184633/2086516000db2a-1637653157/208651\
   600db2-228089169/8346064000dba4+193064067/521629000dba3+84177415/20030553\
   6dba2-205601467673/12519096000dba-41315573089/4173032000db+228644829/1669\
   2128000da5-10887849/417303200da3-1293758657/312977400da2-20863456247/1251\
   909600da-456425543/208651600d+3439781233/2503819200b6+76085289/4173032000\
   b5a+2207013683/782443500b5-228644829/16692128000b4a2+228385521/4173032000\
   b4a+110739377/195610875b4-1323/1043258000b3a3-228644829/8346064000b3a2+25\
   0383483/2086516000b3a+367273373/312977400b3-14385954051/8346064000b2a4-28\
   754809209/4173032000b2a3-32663547/4173032000b2a2+32626503/1043258000b2a-3\
   2626503/260814500b2-1474191957/417303200ba5-4713214737/260814500ba4-10269\
   57141/65203625ba3-32663547/2086516000ba2+32663547/521629000ba-32663547/13\
   0407250b-97990641/2086516000a6-3881275971/521629000a5-62590368741/2086516\
   000a4-4107829887/1043258000a3
==> J[11]=cd+1148200/372848203cb-1524024/27175525ca+4534789049/1391386880d2b2\
   a-2324463127/347846720d2ba+35/64d2b+5/96d2a2+5/24d2a+45245274457/10702976\
   d2-7/192db5-6353027389387677/12174635200db3a-4497962717/18261952800db3+45\
   245274457/13111145600db2a3+228471973/42611223200db2a2-21815387/1521829400\
   db2a-516999/43480840db2+750069/434808400dba4+907911207105139/42611223200d\
   ba3+30252540938799/2130561160dba2-1771932852381621/3043658800dba-23707882\
   7/1521829400db+383841663/434808400da5+141/40da4+341903607/173923360da3-63\
   53027418401357/44741784360da2-12706055163515359/22370892180da-73857/10870\
   210d+1728714797635/34784672b6-5208/27175525b5a+6353027467398221/639168348\
   00b5-686156751/869616800b4a2+27783/16723400b4a+6173979975409/217404200b4-\
   69453/760914700b3a3-686156751/434808400b3a2+1321617/108702100b3a+12706043\
   95725157/22370892180b3-14003199/434808400b2a4-4652991/217404200b2a3-98022\
   393/217404200b2a2+3969/4180850b2a-7938/2090425b2-2222633311245/17392336ba\
   5-55565845783569/108702100ba4-9236529/190228675ba3-98022393/108702100ba2+\
   190503/27175525ba-762012/27175525b-571509/108702100a6-19059082255204071/7\
   4569640600a5-38118165490546077/37284820300a4-664713/54351050a3
==> J[12]=c2+1/3cb2+5/3d+3a3
intvec w = 3,2,1,2;
ring S3 = 0, (c,d,b,a), (a(w),lp);
ideal I = fetch(S1,I);
// I is assumed to be a Dp-Groebner basis.
// We compute a (a(w),lp)-Groebner basis.
ideal J = modfrWalk(I,radius,"Dp",w);
J;
==> J[1]=d2
==> J[2]=c2+3a3+1/3cb2+5/3d
==> J[3]=ca2+4ca+7/2b3+2b
==> J[4]=cda-6/7ba3-2/21cb3-12/7a3-4/21cb2+1/7dba-10/21db-20/21d
==> J[5]=db4a-192/49b2a3-64/147cb4+2db3a-768/49ba3-256/147cb3-4db4+60/49db2a-\
   768/49a3-256/147cb2-8db3+120/49dba-656/147db2-1952/147db-1280/147d
==> J[6]=db6+333576da3-189/4b8+15876b4a2-5186640/2401b2a3+1815960/49cdb2+8395\
   442084/7203cb4-2304/49cb2a-43215/7db5+199982018/49db3a-4664160/7dba2-126b\
   7+72/7b5a+31752b3a2-20742528/2401ba3-1012272/49cdb+16787427752/7203cb3-46\
   08/49cba-129552/49db4+864216/2401db2a-117b6+144/7b4a+9072b2a2-20738496/24\
   01a3-20160cd+4791470576/7203cb2-172796/49db3+5599841736/2401dba-1296/7b5+\
   288/49b3a+18144ba2+9326304/7cb-19529120/7203db2-1188/7b4+576/49b2a-345655\
   04/7203db-3168/49b3-34564160/7203d-3312/49b2
==> J[7]=cb3a-5/8da3-245/1024b8-7/32b6a+2/343b2a3+5/112cdb2-108013/49392cb4+2\
   5/7cb2a-3/256db5-15431/2016db3a+5/4dba2-245/256b7-25/32b5a+8/343ba3+5/84c\
   db-107981/24696cb3+16/7cba-47/2688db4+53/24696db2a-91/256b6-5/8b4a+8/343a\
   3-5/84cd-15403/12348cb2-12/7ca+1/192db3-12015/2744dba+65/32b5-1/14b3a-5/2\
   cb-667/98784db2+85/64b4-2/7b2a+61/3087db-3/112b3+3/14ba+40/3087d+93/112b2\
   -6/7b
==> J[8]=cb5-4/7db2a2+96/7b2a3-4/441cdb2+116/21cb4-8/7dba2+384/7ba3-8/441cdb+\
   32/3cb3+14db4-16/7db2a+384/7a3+176/21cb2+28db3-32/7dba+16/7cb+328/21db2+9\
   76/21db+640/21d
==> J[9]=cdb3+18da3+2cdb2+63cb4+441/2db3a-36dba2+126cb3+36cb2+126dba+72cb
==> J[10]=ba4+5/72da3+245/9216b8+7/288b6a-2/3087b2a3+2a4-5/1008cdb2+108013/44\
   4528cb4-11/63cb2a+1/768db5+15431/18144db3a-11/36dba2+245/2304b7+25/288b5a\
   +12340/3087ba3-5/756cdb+206765/222264cb3-16/63cba+47/24192db4-53/222264db\
   2a+91/2304b6+5/72b4a+24688/3087a3+5/756cd+114187/111132cb2+4/21ca+7055/17\
   28db3+9271/24696dba-65/288b5+1/126b3a+5/18cb+667/889056db2+10/9da-85/576b\
   4+2/63b2a+126506/27783db+1/336b3-1/42ba+123440/27783d-31/336b2+2/21b
==> J[11]=b3a3+4/63db2a2+7203/64b8+52/21b2a3+18526/3969cdb2-32/189cb4-49/48db\
   5-1/6db3a+8/63dba2+7203/16b7-44/21ba3+37052/3969cdb-20/27cb3-259/72db4-5/\
   63db2a+9261/16b6-128/21a3-176/189cb2-113/36db3+32/63dba+1029/2b5-16/63cb-\
   257/378db2+2205/4b4-556/189db+147b3-640/189d+147b2
==> J[12]=b5a2-4/441db2a2+129724da3-49/16b8+6178b4a2-864464/1029b2a3+302660/2\
   1cdb2+4197721018/9261cb4-128/7cb2a-28823/12db5+99991009/63db3a-114271928/\
   441dba2+49/4b7+4b5a+86468/7b3a2-3457184/1029ba3-506216/63cdb+8393713780/9\
   261cb3-256/7cba-129625/126db4+432008/3087db2a+133/4b6+8b4a+24712/7b2a2-34\
   56512/1029a3-494080/63cd+2395735192/9261cb2-86405/63db3+2799920668/3087db\
   a-2b5+16/7b3a+49408/7ba2+518128cb-9766570/9261db2+9b4+32/7b2a-17280544/92\
   61db-36/7b3-17282560/9261d-44/7b2
==> J[13]=b7a-296432/7da3+109/16b8+2b6a-2016b4a2+4610560/16807b2a3-14521796/3\
   087cdb2-22401156488/151263cb4+8000/343cb2a+1382867/1764db5-1600806884/308\
   7db3a+4148384/49dba2+77/4b7-194/49b5a-4032b3a2+18438656/16807ba3+8103808/\
   3087cdb-44793095440/151263cb3+13568/343cba+230189/686db4-6908840/151263db\
   2a+533/28b6-312/49b4a-1152b2a2+18435072/16807a3+7901200/3087cd-4261620128\
   /50421cb2-4864/343ca+1382435/3087db3-4980595264/16807dba+2078/49b5+176/34\
   3b3a-2304ba2-8294976/49cb+52056614/151263db2+2435/49b4-1472/343b2a+921811\
   84/151263db+1900/343b3+608/343ba+30725120/50421d+8044/343b2-2432/343b
==> J[14]=b9+1037536/343da3+4b8+144b4a2-329408/16807b2a3+148256/441cdb2+15987\
   36592/151263cb4-24704/441db5+799730504/21609db3a-296064/49dba2+40/7b7+288\
   b3a2-1317376/16807ba3-4047040/21609cdb+3196814624/151263cb3+2048/2401cba-\
   24db4+164704/50421db2a+40/7b6-64/343b4a+576/7b2a2-3840/49a3-3950080/21609\
   cd+886720/147cb2+4096/2401ca-98816/3087db3+1036320/49dba+272/49b5-128/343\
   b3a+1152/7ba2+592000/49cb-3721504/151263db2+1152/343b4-256/2401b2a-658688\
   0/151263db+1024/343b3-512/2401ba-6400/147d+1920/2401b2+2048/2401b
==> J[15]=dba3-7cb4-49/2db3a+4dba2-14cb3-4cb2-14dba-8cb
==> J[16]=db3a2+1323da3+63b4a2-60/7b2a3+147cdb2+194441/42cb4-49/2db5+64843/4d\
   b3a-2646dba2+126b3a2-240/7ba3-82cdb+194401/21cb3-21/2db4+10/7db2a+36b2a2-\
   240/7a3-80cd+55486/21cb2-14db3+64847/7dba+72ba2+5292cb-226/21db2-400/21db\
   -400/21d
==> J[17]=a5+4a4-7/6cb3+5/9da2-7/18b5-2/3cb+20/9da-2/9b3
==> J[18]=da4-2/49b2a3-2/441cb4-1/63db3a-4/49ba3+10/63cdb-4/441cb3+32/7cba+1/\
   147db2a-b4a+20/63cd+64/7ca-2b3a-10/441db2+4b4-4/7b2a-20/441db+8b3-8/7ba+1\
   6/7b2+32/7b
See also: modular.