Home Online Manual
Top
Back: pfd_lib
Forward: checkpfd
FastBack:
FastForward:
Up: pfd_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.15.11.1 pfd

Procedure from library pfd.lib (see pfd_lib).

Usage:
pfd(f,g[,debug]); f,g poly, debug int
pfd(f,g[,debug]); f poly, g list, debug int
pfd(arguments[, parallelize]); arguments list, parallelize int

Return:
a partial fraction decomposition of f/g as a list l where l[1] is an ideal generated by irreducible polynomials and l[2] is a list of fractions. Each fraction is represented by a list of
1) the numerator polynomial
2) an intvec of indices i for which l[1][i] occurs as a factor in the denominator
3) an intvec containing the exponents of those irreducible factors.
Setting debug to a positive integer measures runtimes and creates a log file (default: debug=0).
The denominator g can also be given in factorized form as a list of an ideal of irreducible non constant polynomials and an intvec of exponents. This can save time since the first step in the algorithm is to factorize g. (A list of the zero-ideal and an empty intvec represents a denominator of 1.)
If instead of f and g, the input is a single list (or even a list of lists) containing elements of the form list(f,g[,debug]) (f,g,debug as above), the algorithm is applied to all entries in parallel (using parallel_lib), if parallelize=1 (default) and in sequence if parallelize=0. A list (or list of lists) of the results is returned.

Note:
The result depends on the monomial ordering. For "small" results use dp.

Example:
 
LIB "pfd.lib";
ring R = 0,(x,y),dp;
poly f = x^3+3*x^2*y+2*y^2-x^2+4*x*y;
poly g = x^2*y*(x-1)*(x-y)^2;
list dec = pfd(f,g);
==>   (2) / (q3*q4)
==> + (-2) / (q1*q4)
==> + (-6) / (q3*q4^2)
==> + (1) / (q2*q4^2)
==> + (9) / (q1*q4^2)
==> + (2) / (q3^2*q4)
==> where
==> q1 = x-1
==> q2 = y
==> q3 = x
==> q4 = x-y
==> (6 terms)
==> 
displaypfd_long(dec);   // display result
==>   (2)/((x)*(x-y))
==> + (-2)/((x-1)*(x-y))
==> + (-6)/((x)*(x-y)^2)
==> + (1)/((y)*(x-y)^2)
==> + (9)/((x-1)*(x-y)^2)
==> + (2)/((x)^2*(x-y))
==> (6 terms)
==> 
checkpfd(list(f,g),dec);   // check for equality to f/g
==> 1
// calculate decompositions of a 2x2 matrix of rational functions at once:
list arguments = list(list(f, g),          list(1, f)     ),
list(list(x*y, y+1), list(1, x^2-y^2));
dec = pfd(arguments);
// the result has the same shape as the
// input (2x2 matrix as list of lists):
displaypfd_long(dec[1][1]);
==>   (2)/((x)*(x-y))
==> + (-2)/((x-1)*(x-y))
==> + (-6)/((x)*(x-y)^2)
==> + (1)/((y)*(x-y)^2)
==> + (9)/((x-1)*(x-y)^2)
==> + (2)/((x)^2*(x-y))
==> (6 terms)
==> 
displaypfd_long(dec[1][2]);
==>   (1)/((x^3+3*x^2*y-x^2+4*x*y+2*y^2))
==> (1 terms)
==> 
displaypfd_long(dec[2][1]);
==>   (x)
==> + (-x)/((y+1))
==> (2 terms)
==> 
displaypfd_long(dec[2][2]);
==>   (1)/((x-y)*(x+y))
==> (1 terms)
==> 
// a more complicated example
ring S = 0,(s12,s15,s23,s34,s45),dp;
poly f = 7*s12^4*s15^2 + 11*s12^3*s15^3 + 4*s12^2*s15^4 - 10*s12^4*s15*s23
- 14*s12^3*s15^2*s23 - 4*s12^2*s15^3*s23 + 3*s12^4*s23^2 + 3*s12^3*s15*s23^2
+ 13*s12^4*s15*s34 + 12*s12^3*s15^2*s34 + 2*s12^2*s15^3*s34
- 5*s12^4*s23*s34 + 33*s12^3*s15*s23*s34 + 49*s12^2*s15^2*s23*s34
+ 17*s12*s15^3*s23*s34 - 17*s12^3*s23^2*s34 - 19*s12^2*s15*s23^2*s34
- 5*s12*s15^2*s23^2*s34 - 24*s12^3*s15*s34^2 - 15*s12^2*s15^2*s34^2
+ 2*s12*s15^3*s34^2 + 15*s12^3*s23*s34^2 - 34*s12^2*s15*s23*s34^2
- 31*s12*s15^2*s23*s34^2 + 2*s15^3*s23*s34^2 + 33*s12^2*s23^2*s34^2
+ 29*s12*s15*s23^2*s34^2 + 5*s15^2*s23^2*s34^2 + 9*s12^2*s15*s34^3
- 4*s12*s15^2*s34^3 - 15*s12^2*s23*s34^3 + 9*s12*s15*s23*s34^3
- 4*s15^2*s23*s34^3 - 27*s12*s23^2*s34^3 - 13*s15*s23^2*s34^3
+ 2*s12*s15*s34^4 + 5*s12*s23*s34^4 + 2*s15*s23*s34^4 + 8*s23^2*s34^4
- 6*s12^3*s15^2*s45 - 9*s12^2*s15^3*s45 - 2*s12*s15^4*s45
+ 30*s12^3*s15*s23*s45 + 56*s12^2*s15^2*s23*s45 + 24*s12*s15^3*s23*s45
- 12*s12^3*s23^2*s45 - 23*s12^2*s15*s23^2*s45 - 10*s12*s15^2*s23^2*s45
- 30*s12^3*s15*s34*s45 - 32*s12^2*s15^2*s34*s45 - 6*s12*s15^3*s34*s45
+ 7*s12^3*s23*s34*s45 - 86*s12^2*s15*s23*s34*s45 - 104*s12*s15^2*s23*s34*s45
- 15*s15^3*s23*s34*s45 + 41*s12^2*s23^2*s34*s45 + 51*s12*s15*s23^2*s34*s45
+ 10*s15^2*s23^2*s34*s45 - 5*s12^3*s34^2*s45 + 33*s12^2*s15*s34^2*s45
+ 14*s12*s15^2*s34^2*s45 - 2*s15^3*s34^2*s45 - 21*s12^2*s23*s34^2*s45
+ 62*s12*s15*s23*s34^2*s45 + 28*s15^2*s23*s34^2*s45 - 46*s12*s23^2*s34^2*s45
- 28*s15*s23^2*s34^2*s45 + 10*s12^2*s34^3*s45 - s12*s15*s34^3*s45
+ 4*s15^2*s34^3*s45 + 21*s12*s23*s34^3*s45 - 6*s15*s23*s34^3*s45
+ 17*s23^2*s34^3*s45 - 5*s12*s34^4*s45 - 2*s15*s34^4*s45 - 7*s23*s34^4*s45
- 6*s12^2*s15^2*s45^2 - 5*s12*s15^3*s45^2 - 2*s15^4*s45^2
- 28*s12^2*s15*s23*s45^2 - 42*s12*s15^2*s23*s45^2 - 10*s15^3*s23*s45^2
+ 9*s12^2*s23^2*s45^2 + 10*s12*s15*s23^2*s45^2 + 24*s12^2*s15*s34*s45^2
+ 36*s12*s15^2*s34*s45^2 + 10*s15^3*s34*s45^2 - 11*s12^2*s23*s34*s45^2
+ 31*s12*s15*s23*s34*s45^2 + 25*s15^2*s23*s34*s45^2
- 18*s12*s23^2*s34*s45^2 - 10*s15*s23^2*s34*s45^2 + 4*s12^2*s34^2*s45^2
- 29*s12*s15*s34^2*s45^2 - 17*s15^2*s34^2*s45^2 + 27*s12*s23*s34^2*s45^2
+ 2*s15*s23*s34^2*s45^2 + 9*s23^2*s34^2*s45^2 - 3*s12*s34^3*s45^2
+ 10*s15*s34^3*s45^2 - 16*s23*s34^3*s45^2 - s34^4*s45^2 + 6*s12*s15^2*s45^3
+ 3*s15^3*s45^3 + 8*s12*s15*s23*s45^3 + 10*s15^2*s23*s45^3
- 8*s12*s15*s34*s45^3 - 10*s15^2*s34*s45^3 + 9*s12*s23*s34*s45^3
+ s12*s34^2*s45^3 + 8*s15*s34^2*s45^3 - 9*s23*s34^2*s45^3 - s34^3*s45^3
- s15^2*s45^4 + s15*s34*s45^4;
poly g = 4*s12*s15*(s12 + s15 - s34)*(s15 - s23 - s34)*(s12 + s23 - s45)
*(s12 - s34 - s45)*(s12 + s15 - s34 - s45)*s45;
list dec = pfd(f,g);
==>   (5/4) / (q7*q8)
==> + (-11/4) / (q6*q8)
==> + (3/4) / (q5*q8)
==> + (-11/4) / (q4*q8)
==> + (1/4) / (q3*q8)
==> + (5/4) / (q2*q8)
==> + (1) / (q1*q8)
==> + (1/2) / (q6*q7)
==> + (1) / (q5*q6)
==> + (-3/2) / (q2*q6)
==> + (-1/4) / (q3*q4)
==> + (3) / (q1*q4)
==> + (1/4) / (q1*q2)
==> + (5/4*s45) / (q1*q7*q8)
==> + (11/4*s45) / (q1*q6*q8)
==> + (-3/4*s34) / (q1*q5*q8)
==> + (11/4*s45) / (q1*q4*q8)
==> + (-1/4*s34) / (q1*q3*q8)
==> + (1/4*s45) / (q1*q2*q8)
==> + (s34) / (q5*q6*q7)
==> + (-1/2*s45) / (q1*q6*q7)
==> + (19/4*s34) / (q4*q5*q7)
==> + (-3/4*s23) / (q2*q5*q6)
==> + (-7/4*s34) / (q1*q4*q5)
==> + (2*s34) / (q1*q2*q5)
==> + (2*s34^2) / (q1*q2*q4*q5)
==> where
==> q1 = s12
==> q2 = s15
==> q3 = s12+s15-s34
==> q4 = s15-s23-s34
==> q5 = s45
==> q6 = s12+s23-s45
==> q7 = s12-s34-s45
==> q8 = s12+s15-s34-s45
==> (26 terms)
==> 
displaypfd(dec);
==>   (5/4) / (q7*q8)
==> + (-11/4) / (q6*q8)
==> + (3/4) / (q5*q8)
==> + (-11/4) / (q4*q8)
==> + (1/4) / (q3*q8)
==> + (5/4) / (q2*q8)
==> + (1) / (q1*q8)
==> + (1/2) / (q6*q7)
==> + (1) / (q5*q6)
==> + (-3/2) / (q2*q6)
==> + (-1/4) / (q3*q4)
==> + (3) / (q1*q4)
==> + (1/4) / (q1*q2)
==> + (5/4*s45) / (q1*q7*q8)
==> + (11/4*s45) / (q1*q6*q8)
==> + (-3/4*s34) / (q1*q5*q8)
==> + (11/4*s45) / (q1*q4*q8)
==> + (-1/4*s34) / (q1*q3*q8)
==> + (1/4*s45) / (q1*q2*q8)
==> + (s34) / (q5*q6*q7)
==> + (-1/2*s45) / (q1*q6*q7)
==> + (19/4*s34) / (q4*q5*q7)
==> + (-3/4*s23) / (q2*q5*q6)
==> + (-7/4*s34) / (q1*q4*q5)
==> + (2*s34) / (q1*q2*q5)
==> + (2*s34^2) / (q1*q2*q4*q5)
==> where
==> q1 = s12
==> q2 = s15
==> q3 = s12+s15-s34
==> q4 = s15-s23-s34
==> q5 = s45
==> q6 = s12+s23-s45
==> q7 = s12-s34-s45
==> q8 = s12+s15-s34-s45
==> (26 terms)
==> 
checkpfd(list(f,g),dec);
==> 1
// size comparison:
size(string(f)) + size(string(g));
==> 4368
size(getStringpfd(dec));
==> 1055
See also: checkpfd; displaypfd; displaypfd_long; evaluatepfd; pfdMat.