D.3.1.1 compress | | matrix, zero columns from A deleted |
D.3.1.2 concat | | matrix, concatenation of matrices A1,A2,... |
D.3.1.3 diag | | matrix, nxn diagonal matrix with entries poly p |
D.3.1.4 dsum | | matrix, direct sum of matrices A1,A2,... |
D.3.1.5 flatten | | ideal, generated by entries of matrix A |
D.3.1.6 genericmat | | generic nxm matrix [entries from id] |
D.3.1.7 is_complex | | 1 if list c is a complex, 0 if not |
D.3.1.8 outer | | matrix, outer product of matrices A and B |
D.3.1.9 power | | matrix/intmat, n-th power of matrix/intmat A |
D.3.1.10 skewmat | | generic skew-symmetric nxn matrix [entries from id] |
D.3.1.11 submat | | submatrix of A with rows/cols specified by intvec r/c |
D.3.1.12 symmat | | generic symmetric nxn matrix [entries from id] |
D.3.1.13 unitmat | | unit square matrix of size n |
D.3.1.14 gauss_col | | transform a matrix into col-reduced Gauss normal form |
D.3.1.15 gauss_row | | transform a matrix into row-reduced Gauss normal form |
D.3.1.16 addcol | | add p*(c1-th col) to c2-th column of matrix A, p poly |
D.3.1.17 addrow | | add p*(r1-th row) to r2-th row of matrix A, p poly |
D.3.1.18 multcol | | multiply c-th column of A with poly p |
D.3.1.19 multrow | | multiply r-th row of A with poly p |
D.3.1.20 permcol | | permute i-th and j-th columns |
D.3.1.21 permrow | | permute i-th and j-th rows |
D.3.1.22 rowred | | reduction of matrix A with elementary row-operations |
D.3.1.23 colred | | reduction of matrix A with elementary col-operations |
D.3.1.24 linear_relations | | find linear relations between homogeneous vectors |
D.3.1.25 rm_unitrow | | remove unit rows and associated columns of A |
D.3.1.26 rm_unitcol | | remove unit columns and associated rows of A |
D.3.1.27 headStand | | A[n-i+1,m-j+1]:=A[i,j] |
D.3.1.28 symmetricBasis | | basis of k-th symmetric power of n-dim v.space |
D.3.1.29 exteriorBasis | | basis of k-th exterior power of n-dim v.space |
D.3.1.30 symmetricPower | | k-th symmetric power of a module/matrix A |
D.3.1.31 exteriorPower | | k-th exterior power of a module/matrix A |