D.3.2.1 inverse | | matrix, the inverse of A |
D.3.2.2 inverse_B | | list(matrix Inv,poly p),Inv*A=p*En ( using busadj(A) ) |
D.3.2.3 inverse_L | | list(matrix Inv,poly p),Inv*A=p*En ( using lift ) |
D.3.2.4 sym_gauss | | symmetric gaussian algorithm |
D.3.2.5 orthogonalize | | Gram-Schmidt orthogonalization |
D.3.2.6 diag_test | | test whether A can be diagnolized |
D.3.2.7 busadj | | coefficients of Adj(E*t-A) and coefficients of det(E*t-A) |
D.3.2.8 charpoly | | characteristic polynomial of A ( using busadj(A) ) |
D.3.2.9 adjoint | | adjoint of A ( using busadj(A) ) |
D.3.2.10 det_B | | determinant of A ( using busadj(A) ) |
D.3.2.11 gaussred | | gaussian reduction: P*A=U*S, S a row reduced form of A |
D.3.2.12 gaussred_pivot | | gaussian reduction: P*A=U*S, uses row pivoting |
D.3.2.13 gauss_nf | | gaussian normal form of A |
D.3.2.14 mat_rk | | rank of constant matrix A |
D.3.2.15 U_D_O | | P*A=U*D*O, P,D,U,O=permutation,diag,lower-,upper-triang |
D.3.2.16 pos_def | | test symmetric matrix for positive definiteness |
D.3.2.17 hessenberg | | Hessenberg form of M |
D.3.2.18 eigenvals | | eigenvalues with multiplicities of M |
D.3.2.19 minipoly | | minimal polynomial of M |
D.3.2.20 spnf | | normal form of spectrum sp |
D.3.2.21 spprint | | print spectrum sp |
D.3.2.22 jordan | | Jordan data of M |
D.3.2.23 jordanbasis | | Jordan basis and weight filtration of M |
D.3.2.24 jordanmatrix | | Jordan matrix with Jordan data jd |
D.3.2.25 jordannf | | Jordan normal form of M |