|
D.4.19.10 isprimaryMon
Procedure from library monomialideal.lib (see monomialideal_lib).
- Usage:
- isprimaryMon (I); I ideal
- Return:
- 1, if I is primary; 0, otherwise.
(returns -1 if I is not a monomial ideal)
- Assume:
- I is a monomial ideal of the basering.
Example:
| LIB "monomialideal.lib";
ring R = 0,(w,x,y,z,t),lp;
ideal I = w^4,x^3,z^2,t^5,x*t,w*x^2*z;
isprimaryMon (I);
==> 1
ideal J = w^4,x^3,z^2,t^5,x*t,w*x^2*z,y^3*t^3;
isprimaryMon (J);
==> 0
|
|