Procedure from library schubert.lib (see schubert_lib).
Return:
number
Input:
M is a moduli space of stable maps, G is a graph
Output:
a number corresponding to the normal bundle on a moduli space of
stable maps at a graph
hypersurfaces
Example:
LIB "schubert.lib";
ring r = 0,x,dp;
variety P = projectiveSpace(4);
stack M = moduliSpace(P,2);
def F = fixedPoints(M);
graph G = F[1][1];
number f = normalBundle(M,G);
f <> 0;
==> 1