D.7.3.1 HilbertSeries | | Hilbert series of the ideal I w.r.t. weight w |
D.7.3.2 HilbertWeights | | weighted degrees of the generators of I |
D.7.3.3 ImageVariety | | ideal of the image variety F(variety(I)) |
D.7.3.4 ImageGroup | | ideal of G w.r.t. the induced representation |
D.7.3.5 InvariantRing | | generators of the invariant ring of G |
D.7.3.6 InvariantQ | | decide if f is invariant w.r.t. G |
D.7.3.7 LinearizeAction | | linearization of the action 'Gaction' of G |
D.7.3.8 LinearActionQ | | decide if action is linear in var(s..nvars) |
D.7.3.9 LinearCombinationQ | | decide if f is in the linear hull of 'base' |
D.7.3.10 MinimalDecomposition | | minimal decomposition of f (like coef) |
D.7.3.11 NullCone | | ideal of the nullcone of the action 'act' of G |
D.7.3.12 ReynoldsImage | | image of f under the Reynolds operator 'RO' |
D.7.3.13 ReynoldsOperator | | Reynolds operator of the group G |
D.7.3.14 SimplifyIdeal | | simplify the ideal I (try to reduce variables) |