Home Online Manual
Top
Back: CompInt
Forward: fullSpace
FastBack:
FastForward:
Up: Singular Manual
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.13.2 gfan_lib

Library:
gfan.lib
Purpose:
Interface to gfan and gfanlib for computations in convex geometry
Authors:
Anders N. Jensen, email: jensen@imf.au.dk
Yue Ren, email: ren@mathematik.uni-kl.de
Frank Seelisch

Procedures:

D.13.2.1 fullSpace  cone, the ambient space of dimension n
D.13.2.2 origin  cone, the origin in an ambient space of dimension n
D.13.2.3 positiveOrthant  cone, the positive orthant of dimension n
D.13.2.4 ambientDimension  the dimension of the ambient space the input lives in
D.13.2.5 canonicalizeCone  a unique representation of the cone c
D.13.2.6 codimension  the codimension of the input
D.13.2.7 coneViaPoints  define a cone
D.13.2.8 coneViaInequalities  define a cone
D.13.2.9 coneLink  the link of c around w
D.13.2.10 containsAsFace  is d a face of c
D.13.2.11 containsInSupport  is d contained in c
D.13.2.12 containsPositiveVector  contains a vector with only positive entries?
D.13.2.13 containsRelatively  p in c?
D.13.2.14 convexHull  convex hull
D.13.2.15 convexIntersection  convex hull
D.13.2.16 dimension  dimension of c
D.13.2.17 dualCone  the dual of c
D.13.2.18 equations  defining equations of c
D.13.2.19 faceContaining  the face of c containing w in its relative interior
D.13.2.20 facets  the facets of c
D.13.2.21 generatorsOfLinealitySpace  generators of the lineality space of c
D.13.2.22 generatorsOfSpan  generators of the span of c
D.13.2.23 getLinearForms  linear forms previously stored in c
D.13.2.24 getMultiplicity  multiplicity previously stored in c
D.13.2.25 inequalities  inequalities of c
D.13.2.26 isFullSpace  is the entire ambient space?
D.13.2.27 isOrigin  is the origin?
D.13.2.28 isSimplicial  is simplicial?
D.13.2.29 linealityDimension  the dimension of the lineality space of c
D.13.2.30 linealitySpace  the lineality space of c
D.13.2.31 negatedCone  the negative of c
D.13.2.32 polytopeViaInequalities  
D.13.2.33 polytopeViaPoints  
D.13.2.34 quotientLatticeBasis  basis of Z^n intersected with the span of c modulo Z^n intersected with the lineality space of c
D.13.2.35 randomPoint  a random point in the relative interior of c
D.13.2.36 rays  generators of the rays of c
D.13.2.37 relativeInteriorPoint  point in the relative interior of c
D.13.2.38 semigroupGenerator  generator of Z^n intersected with c modulo Z^n intersected with the lineality space of c
D.13.2.39 setLinearForms  stores linear forms in c
D.13.2.40 setMultiplicity  stores a multiplicity in c
D.13.2.41 span  unique irredundant equations of c
D.13.2.42 uniquePoint  a unique point in c stable under reflections at coordinate hyperplanes
D.13.2.43 containsInCollection  f contains c?
D.13.2.44 emptyFan  empty fan in ambient dimension n
D.13.2.45 fanViaCones  fan generated by the cones in L
D.13.2.46 fullFan  full fan in ambient dimension n
D.13.2.47 fVector  the f-Vector of f
D.13.2.48 getCone  the i-th cone of dimension d in f
D.13.2.49 insertCone  inserts the cone c into f
D.13.2.50 isCompatible  f and c live in the same ambient space
D.13.2.51 isPure  all maximal cones of f are of the same dimension
D.13.2.52 nmaxcones  number of maximal cones in f
D.13.2.53 ncones  number of cones in f
D.13.2.54 numberOfConesOfDimension  the number of cones in dimension d
D.13.2.55 removeCone  removes the cone c
D.13.2.56 dualPolytope  the dual of p
D.13.2.57 newtonPolytope  convex hull of all exponent vectors of f
D.13.2.58 vertices  vertices of p
D.13.2.59 onesVector  intvec of length n with all entries 1