Home Online Manual
Top
Back: LRskew
Forward: LRcoprod
FastBack:
FastForward:
Up: lrcalc_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.15.8.4 LRmult

Procedure from library lrcalc.lib (see lrcalc_lib).

Usage:
LRmult(x, y); x, y lists of integers (partitions)
LRmult(x, y [, s, r]); x, y lists of integers (partitions), s string equal to 'r', r integer
LRmult(x, y [, s, m, k]); x, y lists of integers (partitions), s string equal to 'q' or 'f', m, k integers

Return:
list of lists

Purpose:
computes the partitions z for which the Littlewood-Richardson coefficient c^z_{x,y} is non-zero together with that coefficient; partitions up to length r

Note:

Example:
 
LIB "lrcalc.lib";
// Compute the partitions z for which the Littlewood-Richardson coefficient
// c^z_{x,y} is non-zero together with that coefficient
// for x= (2, 1), y=(2, 1)
list x = 2, 1;
list y = 2, 1;
LRmult(x, y);
==> [1]:
==>    [1]:
==>       2
==>    [2]:
==>       [1]:
==>          3
==>       [2]:
==>          2
==>       [3]:
==>          1
==> [2]:
==>    [1]:
==>       1
==>    [2]:
==>       [1]:
==>          4
==>       [2]:
==>          2
==> [3]:
==>    [1]:
==>       1
==>    [2]:
==>       [1]:
==>          3
==>       [2]:
==>          1
==>       [3]:
==>          1
==>       [4]:
==>          1
==> [4]:
==>    [1]:
==>       1
==>    [2]:
==>       [1]:
==>          3
==>       [2]:
==>          3
==> [5]:
==>    [1]:
==>       1
==>    [2]:
==>       [1]:
==>          2
==>       [2]:
==>          2
==>       [3]:
==>          1
==>       [4]:
==>          1
==> [6]:
==>    [1]:
==>       1
==>    [2]:
==>       [1]:
==>          2
==>       [2]:
==>          2
==>       [3]:
==>          2
==> [7]:
==>    [1]:
==>       1
==>    [2]:
==>       [1]:
==>          4
==>       [2]:
==>          1
==>       [3]:
==>          1
// Now compute only the partitions with at most 2 entries
LRmult(x, y, "r", 2);
==> [1]:
==>    [1]:
==>       1
==>    [2]:
==>       [1]:
==>          3
==>       [2]:
==>          3
==> [2]:
==>    [1]:
==>       1
==>    [2]:
==>       [1]:
==>          4
==>       [2]:
==>          2
// Now compute the product in the quantum cohomology ring of the Grassmannian Gr(3,3+2).
LRmult(x, y, "q", 3, 2);
==> [1]:
==>    [1]:
==>       1
==>    [2]:
==>       [1]:
==>          2
==>       [2]:
==>          2
==>       [3]:
==>          2
==> [2]:
==>    [1]:
==>       1
==>    [2]:
==>       [1]:
==>          1
// Compute the same product with the output given in fusion ring notation
LRmult(x, y, "f", 3, 2);
==> [1]:
==>    [1]:
==>       1
==>    [2]:
==>       [1]:
==>          2
==>       [2]:
==>          2
==>       [3]:
==>          2
==> [2]:
==>    [1]:
==>       1
==>    [2]:
==>       [1]:
==>          3
==>       [2]:
==>          2
==>       [3]:
==>          1