D.15.11.1 setBaseMultigrading | | attach multiweights/grading group matrices to the basering |
D.15.11.2 getVariableWeights | | get matrix of multidegrees of vars attached to a ring |
D.15.11.3 getGradingGroup | | get grading group attached to a ring |
D.15.11.4 getLattice | | get grading group' lattice attached to a ring (or its NF) |
D.15.11.5 createGroup | | create a group generated by S, with relations L |
D.15.11.6 createQuotientGroup | | create a group generated by the unit matrix with relations L |
D.15.11.7 createTorsionFreeGroup | | create a group generated by S which is torsionfree |
D.15.11.8 printGroup | | print a group |
D.15.11.9 isGroup | | test whether G is a valid group |
D.15.11.10 isGroupHomomorphism | | test whether A defines a group homomrphism from L1 to L2 |
D.15.11.11 isGradedRingHomomorphism | | test graded ring homomorph |
D.15.11.12 createGradedRingHomomorphism | | create a graded ring homomorph |
D.15.11.13 setModuleGrading | | attach multiweights of units to a module and return it |
D.15.11.14 getModuleGrading | | get multiweights of module units (attached to M) |
D.15.11.15 isSublattice | | test whether A is a sublattice of B |
D.15.11.16 imageLattice | | computes an integral basis for P(L) |
D.15.11.17 intRank | | computes the rank of the intmat A |
D.15.11.18 kernelLattice | | computes an integral basis for the kernel of the linear map P. |
D.15.11.19 latticeBasis | | computes an integral basis of the lattice B |
D.15.11.20 preimageLattice | | computes an integral basis for the preimage of the lattice L under the linear map P. |
D.15.11.21 projectLattice | | computes a linear map of lattices having the primitive span of B as its kernel. |
D.15.11.22 intersectLattices | | computes an integral basis for the intersection of the lattices A and B. |
D.15.11.23 isIntegralSurjective | | test whether the map P of lattices is surjective. |
D.15.11.24 isPrimitiveSublattice | | test whether A generates a primitive sublattice. |
D.15.11.25 intInverse | | computes the integral inverse matrix of the intmat A |
D.15.11.26 integralSection | | for a given linear surjective map P of lattices this procedure returns an integral section of P. |
D.15.11.27 primitiveSpan | | computes a basis for the minimal primitive sublattice that contains the given vectors (by A). |
D.15.11.28 factorgroup | | create the group G mod H |
D.15.11.29 productgroup | | create the group G x H |
D.15.11.30 multiDeg | | compute the multidegree of A |
D.15.11.31 multiDegBasis | | compute all monomials of multidegree d |
D.15.11.32 multiDegPartition | | compute the multigraded-homogeneous components of p |
D.15.11.33 isTorsionFree | | test whether the current multigrading is free |
D.15.11.34 isPositive | | test whether the current multigrading is positive |
D.15.11.35 isZeroElement | | test whether p has zero multidegree |
D.15.11.36 areZeroElements | | test whether an integer matrix M considered as a collection of columns has zero multidegree |
D.15.11.37 isHomogeneous | | test whether 'a' is multigraded-homogeneous |
D.15.11.38 equalMultiDeg | | test whether e1==e2 in the current multigrading |
D.15.11.39 multiDegGroebner | | compute the multigraded GB/SB of M |
D.15.11.40 multiDegSyzygy | | compute the multigraded syzygies of M |
D.15.11.41 multiDegModulo | | compute the multigraded 'modulo' module of I and J |
D.15.11.42 multiDegResolution | | compute the multigraded resolution of M |
D.15.11.43 multiDegTensor | | compute the tensor product of multigraded modules m,n |
D.15.11.44 multiDegTor | | compute the Tor_i(m,n) for multigraded modules m,n |
D.15.11.45 defineHomogeneous | | get a grading group wrt which p becomes homogeneous |
D.15.11.46 pushForward | | find the finest grading on the image ring, homogenizing f |
D.15.11.47 gradiator | | coarsens grading of the ring until h becomes homogeneous |
D.15.11.48 hermiteNormalForm | | compute the Hermite Normal Form of a matrix |
D.15.11.49 smithNormalForm | | compute matrices D,P,Q with D=P*A*Q and D is the smith normal form of A |
D.15.11.50 hilbertSeries | | compute the multigraded Hilbert Series of M |
D.15.11.51 lll | | applies LLL(.) of lll.lib which only works for lists on a matrix A |