Home Online Manual
Top
Back: beilinsonWindow
Forward: strand
FastBack:
FastForward:
Up: tateProdCplxNegGrad_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.15.21.13 regionComplex

Procedure from library tateProdCplxNegGrad.lib (see tateProdCplxNegGrad_lib).

Usage:
regionComplex(T,d,I,J,K); T multigradedcomplex, d intvec, I intvec, J intvec, K intvec

Purpose:
compute the region complex of T w.r.t. the sets I,J,K and the vector d

Assume:
I,J,K are intvecs representing disjoint subsets of {1,...,t}, T is a complex in ring E, zero represents the empty set

Return:
multigraded complex which is the region complex T_d(I,J,K) of T

Example:
 
LIB "tateProdCplxNegGrad.lib";
intvec f = 1,1;
def (S,E) = productOfProjectiveSpaces(f);
intvec low = -3,-3;
intvec high = 3,3;
setring(S);
module M = 0;
intmat MGrading[2][1] = -1,-1;
M = setModuleGrading(M,MGrading);
multigradedcomplex tate;
(E,tate) = tateResolution(M,low,high);
setring(E);
tate;
==> E^25  <--  E^40  <--  E^46  <--  E^44  <--  E^35  <--  E^30  <--  E^38  <\
   --  E^56  <--  E^81  <--  E^110  <--  E^141  <--  E^174  <--  E^210
==> -6         -5         -4         -3         -2         -1         0      \
       1          2          3           4           5           6
==> 
ring Z = cohomologyMatrixFromResolution(tate,low,high);
setring(Z);
print(cohomologymat);
==> 5h,0,5,10,15,20,25,
==> 4h,0,4,8, 12,16,20,
==> 3h,0,3,6, 9, 12,15,
==> 2h,0,2,4, 6, 8, 10,
==> h, 0,1,2, 3, 4, 5, 
==> 0, 0,0,0, 0, 0, 0, 
==> h2,0,h,2h,3h,4h,5h 
setring(E);
intvec  c= 0,-3;
intvec I = 0;
intvec J = 0,1;
intvec K = 0,2;
multigradedcomplex U = regionComplex(tate,c,I,J,K);
U;
==> 0  <--  E^10  <--  E^8  <--  E^6  <--  E^4  <--  E^2  <--  E^2  <--  0
==> -4      -3         -2        -1        0         1         2         3
==> 
Z = cohomologyMatrixFromResolution(U,low,high);
setring(Z);
print(cohomologymat);
==> 0,0,0,10,0,0,0,
==> 0,0,0,8, 0,0,0,
==> 0,0,0,6, 0,0,0,
==> 0,0,0,4, 0,0,0,
==> 0,0,0,2, 0,0,0,
==> 0,0,0,0, 0,0,0,
==> 0,0,0,2h,0,0,0 
setring(E);
multigradedcomplex V = regionComplex(tate,c,I,J,J);
==>    ? I,J,K have to be disjoint.
==>    ? leaving tateProdCplxNegGrad.lib::regionComplex (0)