Top
Back: intclToricRing
Forward: normalToricRingFromBinomials
FastBack:
FastForward:
Up: normaliz_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.24.2 normalToricRing

Procedure from library normaliz.lib (see normaliz_lib).

Usage:
normalToricRing(ideal I);
normalToricRing(ideal I, intvec grading);

Return:
The toric ring S is the subalgebra of the basering generated by the leading monomials of the elements of I (considered as a list of polynomials). The function computes the
normalisation T of S and returns an ideal listing the algebra generators of T over the coefficient field.
The function returns the input ideal I if one of the options blocking the computation of Hilbert bases has been activated. However, in this case some numerical invariants are computed, and some other data may be contained in files that you can read into Singular (see showNuminvs, exportNuminvs).

Note:
A mathematical remark: the toric ring depends on the list of monomials given, and not only on the ideal they generate!

Example:
 
LIB "normaliz.lib";
ring  R = 37,(x,y,t),dp;
ideal I = x3,x2y,y3;
normalToricRing(I);
==> _[1]=y3
==> _[2]=xy2
==> _[3]=x2y
==> _[4]=x3
See also: ehrhartRing; intclMonIdeal; intclToricRing; normalToricRingFromBinomials; toricRingFromBinomials.


Top Back: intclToricRing Forward: normalToricRingFromBinomials FastBack: FastForward: Up: normaliz_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.4.0, 2024, generated by texi2html.