Top
Back: latticeIdeal
Forward: torusInvariants
FastBack:
FastForward:
Up: normaliz_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.24.9 groebnerBasis

Procedure from library normaliz.lib (see normaliz_lib).

Usage:
groebnerBasis(ideal I);

Return:
Returns a Gr"obner basis of the lattice ideal defined by the elements of I which have to be binomials. The lattice ideal is the restriction to the polynomial ring of the ideal of the Laurent polynomial ring generated by I. The default monomial order is DegRevLex where Deg is the total degree on the ambient polynomial ring. Lex and DegLex orders can be chosen via options.

Note:
This function requires the previous setting of an NmzFilename. The function does not delete the written files.

Example:
 
LIB "normaliz.lib";
setNmzFilename("binomials");
ring S = 37,(u,v,w,x,y,z),dp;
ideal I = u2-v2, x2-y2, y2-vw, z2-xy;
groebnerBasis(I);
==> _[1]=xy-z2
==> _[2]=x2-y2
==> _[3]=vw-y2
==> _[4]=u2-v2
==> _[5]=y3-xz2
setNmzOption("lex",1);
==> 1
groebnerBasis(I);
==> _[1]=y4-z4
==> _[2]=-y3+xz2
==> _[3]=xy-z2
==> _[4]=x2-y2
==> _[5]=vw-y2
==> _[6]=u2-v2
setNmzOption("lex",0);
==> 1
See also: latticeIdeal.


Top Back: latticeIdeal Forward: torusInvariants FastBack: FastForward: Up: normaliz_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.4.0, 2024, generated by texi2html.