|
D.15.1.25 germWithSemiNormalizedNNB
Procedure from library arnold.lib (see arnold_lib).
- Usage:
- germWithSemiNormalizedNNB(N); N NormalForm as given by @ref(determineNormalizedNNBGerm)
- Return:
- a polynomial, returned as a Poly, that is stable equivalent to N.phi.sourcegerm.value with a normalized nondegenerate Newton boundary up to scalar multiplication
of each of its variables, if possible, or an ERROR message otherwise
Example:
| LIB "arnold.lib";
ring R = 0,(x,y),ds;
poly g = (x^2+y^2)^2+5*x^(10)+y^(11);
poly phix = x+y^2+x^2+x*y+x^2*y+x*y^3;
poly phiy = y+y^2+2*x^2+x*y+y*x^2+y^2*x+x*y^4;
map phi = R,phix,phiy;
g = phi(g);
Poly F = makePoly(g);
NormalForm N = determineNormalForm(F);
N=determineGermWithSemiNormalizedNNB(N);
==> // coefficients: QQ[a]/(...) considered as a field
==> // number of vars : 2
==> // block 1 : ordering ds
==> // : names x y
==> // block 2 : ordering C
germWithSemiNormalizedNNB(N);
==> x^2*y^2+(-24576/27341*a^3+74880/27341*a^2-180138/27341*a+6394015/874912)*\
x^3*y^2+(24576/27341*a^3-74880/27341*a^2+180138/27341*a-2019455/874912)*x\
^2*y^3+(-26624/27341*a^3+81120/27341*a^2-390299/54682*a+14948265/3499648)\
*x^4*y^2+27/2*x^3*y^3+(26624/27341*a^3-81120/27341*a^2+390299/54682*a-215\
10105/3499648)*x^2*y^4+(-1024/1439*a^3+3120/1439*a^2-18511/5756*a+653965/\
368384)*x^6*y+(-5120/27341*a^3+15600/27341*a^2-150115/109364*a-862983/699\
9296)*x^5*y^2+(-86528/27341*a^3+263640/27341*a^2-5073887/218728*a+3380317\
41/13998592)*x^4*y^3+(64512/27341*a^3-196560/27341*a^2+1891449/109364*a-5\
2688771/6999296)*x^3*y^4+(-2560/27341*a^3+7800/27341*a^2-150115/218728*a-\
2175351/13998592)*x^2*y^5+(-1024/1439*a^3+3120/1439*a^2-18511/5756*a+6539\
65/368384)*x*y^6+(-96128/27341*a^3+223818/27341*a^2-13683033/874912*a+354\
411203/55994368)*x^7*y+(-78848/27341*a^3+343848/27341*a^2-583339/27341*a+\
226849033/13998592)*x^6*y^2+(-62336/27341*a^3+189930/27341*a^2-14621201/8\
74912*a+590152643/55994368)*x^5*y^3+(-7040/27341*a^3+21450/27341*a^2-1651\
265/874912*a+408058939/55994368)*x^4*y^4+(-10240/27341*a^3+31200/27341*a^\
2-150115/54682*a-1464485/3499648)*x^3*y^5+(-68352/27341*a^3+5508/1439*a^2\
-1367961/437456*a-152450143/27997184)*x^2*y^6+(-3712/27341*a^3+80382/2734\
1*a^2-985787/874912*a+21037145/55994368)*x*y^7+(-26272/27341*a^3+10439/54\
682*a^2-11755443/3499648*a-2145966335/223977472)*x^8*y+(-615616/27341*a^3\
+1875705/27341*a^2-217923365/1749824*a+11303539391/111988736)*x^7*y^2+(-6\
048/27341*a^3+17693/2878*a^2-57708587/3499648*a+3729008129/223977472)*x^6\
*y^3+(-17376/27341*a^3+105885/54682*a^2-16302489/3499648*a-681310853/2239\
77472)*x^5*y^4+(-154112/27341*a^3+469560/27341*a^2-9036923/218728*a+46510\
223/3499648)*x^4*y^5+(90016/27341*a^3-847847/54682*a^2+110241579/3499648*\
a-7432121633/223977472)*x^3*y^6+(-156512/27341*a^3+953745/54682*a^2-51067\
49/3499648*a+2287840007/223977472)*x^2*y^7+(67392/27341*a^3-130507/27341*\
a^2+18605659/1749824*a-1662649709/111988736)*x*y^8+(30744/27341*a^3-86450\
5/218728*a^2+98847157/13998592*a-3039297407/895909888)*x^9*y+(-630560/273\
41*a^3+1556451/27341*a^2-420969473/3499648*a+840040267/13998592)*x^8*y^2+\
(-196880/27341*a^3+3849987/109364*a^2-415388919/6999296*a+36536603077/447\
954944)*x^7*y^3+(-142904/27341*a^3+3339385/218728*a^2-563526729/13998592*\
a+34094288135/895909888)*x^6*y^4+(-4584/1439*a^3+111735/11512*a^2-1720317\
9/736768*a-378059247/47153152)*x^5*y^5+(-1840/27341*a^3-121475/109364*a^2\
-24116685/6999296*a+4622048811/447954944)*x^4*y^6+(-293552/27341*a^3+1632\
137/109364*a^2-95808669/6999296*a+13074414591/447954944)*x^3*y^7+(277640/\
27341*a^3-4591707/218728*a^2+973014359/13998592*a-45264659333/895909888)*\
x^2*y^8+(5096/27341*a^3-181775/218728*a^2+8234299/13998592*a+2528309015/8\
95909888)*x*y^9+x^22+y^22
==>
|
|