Post a reply
Username:
Note:If not registered, provide any username. For more comfort, register here.
Subject:
Message body:
Enter your message here, it may contain no more than 60000 characters. 

Smilies
:D :) :( :o :shock: :? 8) :lol: :x :P :oops: :cry: :evil: :twisted: :roll: :wink: :!: :?: :idea: :arrow: :| :mrgreen:
Font size:
Font colour
Options:
BBCode is ON
[img] is ON
[flash] is OFF
[url] is ON
Smilies are ON
Disable BBCode
Disable smilies
Do not automatically parse URLs
Confirmation of post
To prevent automated posts the board requires you to enter a confirmation code. The code is displayed in the image you should see below. If you are visually impaired or cannot otherwise read this code please contact the %sBoard Administrator%s.
Confirmation code:
Enter the code exactly as it appears. All letters are case insensitive, there is no zero.
   

Topic review - Eine Frage!
Author Message
  Post subject:  Re: Eine Frage!  Reply with quote
When i wrote

U = {f(x,y,z,u) = g(x,y,z,u) \neq 0 }

it means that U is an open subset of

X = {f(x,y,z,u) = g(x,y,z,u)}.
Post Posted: Fri Sep 17, 2010 10:40 pm
  Post subject:  Re: Eine Frage!  Reply with quote
LDT wrote:
No there is no contradiction here. The last \neq 0 means that you consider an open dense Zariski subset of the affine variety defined by the equations.


To clarify your problem, let us recall first the mathematical terminology:

...=0 is called an equation

..\neq 0 is called an inequality, (Ungleichung in German).
Post Posted: Fri Sep 17, 2010 2:51 pm
  Post subject:  Re: Eine Frage!  Reply with quote
No there is no contradiction here. The last \neq 0 means that you consider an open dense Zariski subset of the affine variety defined by the equations.
Post Posted: Wed Sep 15, 2010 8:38 pm
  Post subject:  Re: Eine Frage!  Reply with quote
Your question is somehow selfcontrdaticting:

With "\neq 0" it is not an equation.

Supposed that you mean "=0", then see

System of polynomial equations
viewtopic.php?f=10&t=1801&start=0

where a problem similar to yours is discussed.
Post Posted: Wed Sep 15, 2010 2:31 pm
  Post subject:  Re: Eine Frage!  Reply with quote
No one want to reply me? :( i should post then my question once again.

Suppose we are given a system of equations, say

(1) x^2 - tu^2 + t = ( t^2u^2 - t )y^2 \neq 0

(2) x^2 - 2tu^2 + 1/t = t(t^2u^2 - t)z^2 \neq 0

where x,y,z,u are variables and these equations are defined over C(t). Can Singular tell me if i have a solution after a field extension of degree odd?
Post Posted: Fri Sep 10, 2010 7:25 am
  Post subject:  Eine Frage!  Reply with quote
Kann Singular die Frage nach der Existenz von Lösungen eines Gleichungssystems nach gewisser Körpererweiterung beanworten?

z.b habe ich 2 Gleichungen:

(1) x^2 - tu^2 + t = ( t^2u^2 - t )y^2 \neq 0

(2) x^2 - 2tu^2 + 1/t = t(t^2u^2 - t)z^2 \neq 0

über Q(t) oder C(t) definiert, wobei x,y,z,u Unbestimmte sind. Ich wollte mal wissen ob das system nach einer Körpererweiterung vom ungeraden Grad, spricht 3,5,7...eine Lösung hat. Kann ich das dann mit Singular programmieren?
Post Posted: Wed Sep 08, 2010 8:36 pm


It is currently Fri May 13, 2022 11:07 am
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group