Post new topic Reply to topic  [ 18 posts ]  Go to page Previous  1, 2
Author Message
 Post subject: Re: Finding parameters
PostPosted: Thu Nov 11, 2010 5:06 pm 

Joined: Mon Nov 08, 2010 2:18 pm
Posts: 10
The fact is that I'm not sure on how to interpret the last outcome...
thank you!


Report this post
Top
 Profile  
Reply with quote  
 Post subject: Re: Finding parameters
PostPosted: Thu Nov 11, 2010 8:32 pm 

Joined: Tue Jun 23, 2009 10:33 pm
Posts: 51
Location: Kaiserslautern
Michele T wrote:
just to be sure just look at the second example:
This is what I did:
Code:
> LIB "matrix.lib";
> ring R = 0,(x,y,z), dp;
> matrix B[3][3] = 2y, x, 0,     -z,0,y,    0, -z,2z;
> matrix v[3][14]= x,0,0,-2y,2x,0,0,0,z,2y,0,-z,0,2z,  0,2x,0,0,-2y,-x,y,0,0,z,y,0,0,0,   0,0,3x,0,0,-2y,0,2y,0,0,z,0,z,0;
> print(v);                                                                                                               
x,0, 0, -2y,2x, 0,  0,0, z,2y,0,-z,0,2z,
0,2x,0, 0,  -2y,-x, y,0, 0,z, y,0, 0,0,
0,0, 3x,0,  0,  -2y,0,2y,0,0, z,0, z,0 
> print( gauss_col (transpose(jacob(B)) + transpose(jacob(-v))) );
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,0,0,0,0,0,0

so does this means that the only solution is the zero one?


Should not 'v' look as follows?
Code:
x,0, 0, -2y,2x, 0,  0,0, z,2y,0, -z,0,2z,0,
0,2x,0, 0,  -2y,-x, y,0, 0,z, -y,0, 0,0, -z,
0,0, 3x,0,  0,  -2y,0,2y,0,0, z, 0, z,0, 0 


Besides, i'm sorry:
1. it's better to construct the system as i show below,
and
2. for the intersection you clearly need the row-reduced block-triangular form (use '''gauss_row''' instead!):

Code:
> def N = transpose(jacob(B)); N = N, transpose(jacob(-v)); print(N);
0, 1, 0,-1,0, 0, 0,-2,0,0, 0, 0, 0, 0, 0,0, 0, 0,
0, 0, 0,0, -2,0, 0,0, 1,0, 0, 0, 0, 0, 0,0, 0, 0,
0, 0, 0,0, 0, -3,0,0, 0,0, 0, 0, 0, 0, 0,0, 0, 0,
2, 0, 0,0, 0, 0, 2,0, 0,0, 0, 0, -2,0, 0,0, 0, 0,
0, 0, 1,0, 0, 0, 0,2, 0,-1,0, 0, 0, 1, 0,0, 0, 0,
0, 0, 0,0, 0, 0, 0,0, 2,0, -2,0, 0, 0, 0,0, 0, 0,
0, 0, 0,0, 0, 0, 0,0, 0,0, 0, -1,0, 0, 1,0, -2,0,
-1,0, 0,0, 0, 0, 0,0, 0,0, 0, 0, -1,0, 0,0, 0, 1,
0, -1,2,0, 0, 0, 0,0, 0,0, 0, 0, 0, -1,0,-1,0, 0

> print( gauss_row (N) );
0, 0,   0, 0,  0, 1,0, 0,0,0, 0,0,  0,0,0,   0,0,0,
0, -1/2,0, 1/2,0, 0,0, 1,0,0, 0,0,  0,0,0,   0,0,0,
0, 0,   0, 0,  -2,0,0, 0,1,0, 0,0,  0,0,0,   0,0,0,
0, 0,   0, 0,  -2,0,0, 0,0,0, 1,0,  0,0,0,   0,0,0,
-1,0,   0, 0,  0, 0,-1,0,0,0, 0,0,  1,0,0,   0,0,0,
0, 1,   1, -1, 0, 0,0, 0,0,-1,0,0,  0,1,0,   0,0,0,
0, 0,   -3,1,  0, 0,0, 0,0,1, 0,0,  0,0,0,   1,0,0,
0, 0,   0, 0,  0, 0,0, 0,0,0, 0,1/2,0,0,-1/2,0,1,0,
-2,0,   0, 0,  0, 0,-1,0,0,0, 0,0,  0,0,0,   0,0,1




this is a homogeneous linear system for your parameters:
(rows correspond to the {var*gen} basis), the 1st three cols correspond to the (free) span of B, let's call them: (p,q,r),
while the rest 15 - to the parameters from ''v'': (a_1, a_2, a_3, a_4, a_5, a_6, b_2, b_3, b_4, b_5, b_6, c_1, c_3, c_5, c_6 )

Due to that system you have p,q,r,a_1,a_2,a_4,a_6,b_2,b_4,c_1 as free parameters,
the 1st row says: a_3 = 0,
while all other parameters are linearly expressed via the free parameters:
2nd row => -(-1/2 q + 1/2 a_1) = a_5
3rd row => -(-2 a_2) = a_6
and so on...

i hope this helps,
O.


Report this post
Top
 Profile  
Reply with quote  
 Post subject: Re: Finding parameters
PostPosted: Fri Nov 12, 2010 12:28 pm 

Joined: Mon Nov 08, 2010 2:18 pm
Posts: 10
Thank you very very much, now is more clear!
best
Michele


Report this post
Top
 Profile  
Reply with quote  
Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 18 posts ]  Go to page Previous  1, 2

You can post new topics in this forum
You can reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

It is currently Fri May 13, 2022 11:07 am
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group