Post new topic Reply to topic  [ 2 posts ] 
Author Message
 Post subject: Problem interpreting facWeyl output
PostPosted: Wed Aug 29, 2018 11:56 am 

Joined: Tue Aug 28, 2018 1:55 pm
Posts: 1
Hi all,

apologies for asking a possibly stupid question about facWeyl. The problem might be my incomplete understanding of Algebra.

I don't understand why facWeyl does not factor x1*d1 + x1* d1 * x2* d2 + x2* d2 + 1 into (1+ x1*d1)*(1+x2*d2). Or maybe it does but I don't understand the way facWeyl tells me this.

Code:
LIB "ncfactor.lib";
ring R = 0,(x1,x2,d1,d2),dp;
matrix C[4][4] = 1,1,1,1,
1,1,1,1,
1,1,1,1,
1,1,1,1;
matrix D[4][4] = 0,0,1,0,
0,0,0,1,
-1,0,0,0,
0,-1,0,0;
def r = nc_algebra(C,D);
setring(r);
poly h = x1*d1 + x1* d1 * x2* d2 + x2* d2 + 1;
facWeyl(h);
[1]:
   [1]:
1
   [2]:
      d1
   [3]:
      d2
   [4]:
      x1
   [5]:
      x2
[2]:
   [1]:
1
   [2]:
      d1
   [3]:
      d2
   [4]:
      x2
   [5]:
      x1
[3]:
   [1]:
1
   [2]:
      d1
   [3]:
      x1
   [4]:
      d2
   [5]:
      x2
[4]:
   [1]:
1
   [2]:
      d2
   [3]:
      d1
   [4]:
      x1
   [5]:
      x2
[5]:
   [1]:
1
   [2]:
      d2
   [3]:
      d1
   [4]:
      x2
   [5]:
      x1
[6]:
   [1]:
1
   [2]:
      d2
   [3]:
      x2
   [4]:
      d1
   [5]:
      x1


Thanks in advance for any help.

Best regards,
Matthias


Report this post
Top
 Profile  
Reply with quote  
 Post subject: Re: Problem interpreting facWeyl output
PostPosted: Fri Jan 17, 2020 6:52 pm 

Joined: Thu Aug 11, 2005 8:03 pm
Posts: 40
Location: RWTH Aachen, Germany
Hello Matthias,

the answer to you main question
"why facWeyl does not factor x1*d1 + x1* d1 * x2* d2 + x2* d2 + 1 into (1+ x1*d1)*(1+x2*d2)."
is as follows:
"because (1+ x1*d1) = d1*x1 is reducible".

Some suggestions:
1) use Weyl(); procedure from LIB "nctools.lib"; to set up Weyl algebras quickly
2) use just ncfactor(h); for any kind of factorization
3) while using ncalgebra as you did, there's a shortcut
ncalgebra(1,D); since the matrix C does not contain other coefficients than 1.

In more details: ad (1) and (2):
In case you want to work with the second Weyl algebra, the ring must be defined as follows:
Code:
LIB "ncfactor.lib";
LIB "nctools.lib";
ring R = 0,(x1,x2,d1,d2),dp;
def A2 = Weyl(); setring A2;
A2; // prints correctly the non-commutative relations between generators
poly h = x1*d1 + x1* d1 * x2* d2 + x2* d2 + 1;
ncfactor(h); 


Regards,
Viktor Levandovskyy


Report this post
Top
 Profile  
Reply with quote  
Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 2 posts ] 

You can post new topics in this forum
You can reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

It is currently Fri May 13, 2022 10:55 am
cron
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group