Next: About this document ...
Up: Recursive Computation of Free
Previous: 6. Timings and Choice
- 1
- A.Capani, G. DeDominicis, G. Niesi, L. Robbiano, Computing
minimal finite free resolution, Preprint (1996), Universita di Genova, 1-15.
- 2
- D. Buchsbaum, A generalized Koszul complex I, Trans. Amer. Math.
Soc. 111 (1964),183-196.
- 3
- D. Eisenbud, Commutative Algebra with a View Toward Algebraic
Geometry, GTM 150, Springer (1995).
- 4
- J.L. Koszul, Homologie et cohomologie des algebres de Lie, Bull.
Soc. Math. de France, 78 (1950), 65-127.
- 5
- R. LaScala and M. Stillman, Strategies for computing
minimal free resolutions, J. Symb. Comput. 26 (1998), No.4, 409-431.
- 6
- Schreyer, F.-O.: Die Berechnung von Syzygien mit dem
verallgemeinerten Weierstrasschen Divisionssatz. Diplomarbeit, Hamburg
(1980).
- 7
- Th. Siebert, Algorithms for the computation of free resolutions,
in Algorithmic Algebra and Number Theory, B.H. Matzat, G.-M. Greuel, G. Hiss
(Eds.), Springer (1998), 295-310.
| ZCA Home |
Reports |