next up previous
Next: Computation Up: Algorithm Previous: Algorithm

Idea

Since $ \partial_t t=s^{-1}t=s^{-1}s^2\partial_s=s\partial_s$, the

$\displaystyle \mathcal{H}''_k:=\sum_{j=0}^k(\partial_t
t)^j\mathcal{H}''=\sum_{j=0}^k(s\partial_s)^j\mathcal{H}''.
$

are $ {\mathbf{C}\{t\}}$-lattices and $ {\mathbf{C}\{\!\{s\}\!\}}$-lattices. Since $ \mathcal{G}$ is regular, the saturation

$\displaystyle \mathcal{H}''_\infty\,:=\,
\sum_{j=0}^\infty (\partial_t t)^j\mathcal{H}''$

of $ \mathcal{H}''$ is a $ {\mathbf{C}\{t\}}$-lattice and, hence, $ k_\infty:=\min\{k\ge0\mid\mathcal{H}''_k=
\mathcal{H}''_\infty\}$ is a finite number. For any $ K\ge n+1$ the inclusions $ V^{>-1}\supset\mathcal{H}''\supset V^{n-1}$ imply inclusions

$\displaystyle V^{>-1}\supset\,\mathcal{H}''_\infty\supset\,\mathcal{H}''\supset...
...n\supset\,
\partial_t^{-K}V^{>-1}\supset\, \partial_t^{-K}\mathcal{H}''_\infty
$

and $ \mathcal{H}''_\infty$ and $ \partial_t^{-K}\mathcal{H}''_\infty$ are $ \partial_t t$-invariant. Hence, $ \partial_t t$ and $ t\partial_t$ induce endomorphisms $ \overline{\partial_t t},\,
\overline{t\partial_t}\in End_\mathbf{C}\bigl(\mathcal{H}''_\infty\big/
\partial_t^{-K}\mathcal{H}''_\infty\bigr)$ such that the V-filtration $ V_{\overline{t\partial_t}}=V_{\overline{\partial_t
t}}^{\bullet+1}$ defined by $ \overline{t\partial_t}$ on $ \mathcal{H}''_\infty\big/\partial_t^{-K}\mathcal{H}''_\infty$ induces the V-filtration on the subquotient $ \mathcal{H}''/\partial_t^{-1}\mathcal{H}''=Gr^F_0\mathcal{G}_0$.



Christoph Lossen
2001-03-21