next up previous
Next: Summary Up: Algorithm Previous: Idea

Computation

By the finite determinacy theorem, we may assume that $ f\in\mathbf{C}[\boldsymbol{x}]$, $ \boldsymbol{x}:=x_0,\dots,x_n$, is a polynomial. Since $ \mathbf{C}[\boldsymbol{x}]_{(\boldsymbol{x})}\subset\mathbf{C}\{\boldsymbol{x}\}$ is faithfully flat and all data will be defined over $ \mathbf{C}[\boldsymbol{x}]_{(\boldsymbol{x})}$, we may replace $ \mathbf{C}\{\boldsymbol{x}\}$ by $ \mathbf{C}[\boldsymbol{x}]_{(\boldsymbol{x})}$ and, similarly, $ {\mathbf{C}\{t\}}$ by $ \mathbf{C}[t]_{(t)}$ and $ {\mathbf{C}\{\!\{s\}\!\}}$ by $ \mathbf{C}[s]_{(s)}$ for the computation. With the additional assumption $ f\in\mathbf{Q}[\boldsymbol{x}]$, all data will be defined over $ \mathbf{Q}$, and we can apply methods of computer algebra. Using standard basis methods for local rings, $ \mathbf{C}[\boldsymbol{x}]_{\langle \boldsymbol{x}\rangle}$ one can compute a monomial $ \mathbf{C}$-basis $ \boldsymbol{m}=(m_1,\dots,m_\mu)^T$ of

$\displaystyle \Omega_f:=\Omega^{n+1}/{d\!\,}
f\wedge\Omega^n\cong{\mathbf{C}\{\boldsymbol{x}\}}/(\partial_{\boldsymbol{x}} f).
$

Since $ \mathcal{H}''/s\mathcal{H}''\cong\Omega_f$, $ \boldsymbol{m}$ represents a $ {\mathbf{C}\{\!\{s\}\!\}}$-basis of $ \mathcal{H}''$ and a $ \mathbf{C}(s)$-basis of $ \mathcal{G}$ by Nakayama's lemma.

The matrix $ A$ of $ t$ with respect to $ \boldsymbol{m}$ is defined by $ t\boldsymbol{m}=:A\boldsymbol{m}$. Since $ t=s^2\partial_s$, we obtain for $ g\in\mathbf{C}(s)^\mu$

$\displaystyle tg\boldsymbol{m}\,=\,\bigl(gA+s^2\partial_s(g)\bigr)\boldsymbol{m}\,.
$

So the action of $ t$ in terms of the $ \mathbf{C}(s)$-basis $ \boldsymbol{m}$ is determined by the matrix $ A$ by the above formula.

A reduced normalform with respect to a local monomial ordering allows to compute the projection to the first summand in

$\displaystyle \SelectTips{cm}{}\xymatrix {\Omega_f\oplus{d\!\,} f\wedge\Omega^n...
...e{d\!\,}\Omega^{n-1}\cong \mathcal{H}''/s\mathcal{H}''\oplus
s\mathcal{H}''}.
$

Since $ t[\omega]=[f\omega]$ and $ s^{-1}[{d\!\,}
f\wedge\eta]=\partial_t[{d\!\,} f\wedge\eta]=[{d\!\,}\eta]$, the matrix $ A$ of $ t$ with respect to $ \boldsymbol{m}$ can be computed up to arbitrarily high order.

The basis representation $ H''_k$ of $ \mathcal{H}''_k$ with respect to $ \boldsymbol{m}$ defined by $ \mathcal{H}''_k=:H''_k\boldsymbol{m}$ can be computed inductively by

$\displaystyle {\delta\!H}_0$ $\displaystyle :=H_0:={\mathbf{C}\{\!\{s\}\!\}}^\mu,$    
$\displaystyle {\delta\!H}_{k+1}$ $\displaystyle :=jet_{-1}\bigl(s^{-1}{\delta\!H}_kjet_k(A)+s\partial_s{\delta\!H}_k\bigr),$    
$\displaystyle H_{k+1}$ $\displaystyle =H_k+{\delta\!H}_{k+1}.$    

Using standard basis methods, one can check if $ H_k=H_{k+1}$ and compute a $ {\mathbf{C}\{\!\{s\}\!\}}$-basis $ {\boldsymbol{m}}'$ of $ H_{k_\infty}=:H_\infty$ with

$\displaystyle \delta({\boldsymbol{m}}'):=\max\bigl\{ord\bigl(m'_{i_1,j_1}\bigr)...
...,j_2}\bigr)\:\big\vert\: m'_{i_1,j_1}\ne0\ne m'_{i_2,j_2}\bigr\}\le
k_\infty.
$

Then the matrix $ A'$ of $ t$ with respect to the $ {\mathbf{C}\{\!\{s\}\!\}}$-basis $ {\boldsymbol{m}}'\boldsymbol{m}$ of $ \mathcal{H}''_\infty$ is defined by the formula $ \boldsymbol{m}'A+s^2\partial_s \boldsymbol{m}'=:A'\boldsymbol{m}'$, and $ jet_k(A')=jet_k(A'_{\le k})$ for $ A'_{\le k}$ defined by

$\displaystyle \boldsymbol{m}'jet_{k+\delta(\boldsymbol{m}')}(A)+s^2\partial_s \boldsymbol{m}'=:A'_{\le k}\boldsymbol{m}'.
$

Hence, the basis representation of $ \overline{\partial_t t}\in End_\mathbf{C}\bigl(\mathcal{H}''_\infty\big/
\partial_t^{-K}\mathcal{H}''_\infty\bigr)$

with respect to $ \boldsymbol{m}'\boldsymbol{m}$ is

$\displaystyle \overline{s^{-1}A'+s\partial_s}\,=\, \overline{s^{-1}A'_{\le
K}+s...
...{C}\bigl({\mathbf{C}\{\!\{s\}\!\}}^\mu/s^K{\mathbf{C}\{\!\{s\}\!\}}^\mu\bigr).
$

The basis representation $ H'$ of $ \mathcal{H}''$ with respect to $ \boldsymbol{m}'\boldsymbol{m}$ is defined by $ H_0=:H'\boldsymbol{m}'$, and $ V^{\bullet+1}_{\overline{s^{-1}A'_{\le
K}+s\partial_s}}(H'/sH')\boldsymbol{m}'$ is the basis representation of $ V(\mathcal{H}''/s\mathcal{H}'')$ with respect to $ \boldsymbol{m}$. The matrix of $ \overline{s^{-1}A'_{\le K}+s\partial_s}$ with respect to the canonical $ \mathbf{C}$-basis

$\displaystyle \setcounter {MaxMatrixCols}{20}\begin{pmatrix}
1 & & & s & & & s^...
...cdots & & \ddots & \\
& & 1 & & & s & & & s^2 & & & & s^{K-1}
\end{pmatrix}^t
$

of $ {\mathbf{C}\{\!\{s\}\!\}}^\mu/s^K{\mathbf{C}\{\!\{s\}\!\}}^\mu$ is given by the block matrix

$\displaystyle \begin{pmatrix}
A'_1 & A'_2 & A'_3 & A'_4 & \cdots & A'_K \\
& A...
... \ddots & \vdots \\
& & & & \ddots & A'_2 \\
& & & & & A'_1+K-1
\end{pmatrix}$

where $ A'=\sum_{k\ge0}A'_ks^k$. Since the eigenvalues of $ A'_1$ are rational, they can be computed using univariate factorization over the rational numbers. Then the V-filtration $ V^{\bullet+1}_{\overline{s^{-1}A'_{\le
K}+s\partial_s}}$ can be computed using methods of linear algebra.


next up previous
Next: Summary Up: Algorithm Previous: Idea
Christoph Lossen
2001-03-21