|
D.16.1.3 groebnerCone
Syntax:
groebnerCone( poly g, intvec v )
groebnerCone( poly g, bigintmat v )
groebnerCone( ideal I, intvec v )
groebnerCone( ideal I, bigintmat v )
Assume:
- I reduced standard basis, v contained in the maximal Groebner cone of the current ordering
Type:
- cone
Purpose:
- the euklidean closure of all weight vectors with respect to whom the initial form of g or the initial ideal of I coincides with the initial form or the initial ideal with respect to v.
Example:
| LIB "gfanlib.so";
ring r = 0,(x,y),dp;
poly g = x+y+1;
cone C = groebnerCone(g,intvec(1,1));
rays(C);
==> 1,1
generatorsOfLinealitySpace(C);
==>
ideal I = x2-y3,x3-y2-x;
I = std(I);
C = groebnerCone(I,intvec(1,1));
rays(C);
==> 3,2,
==> 2,3
generatorsOfLinealitySpace(C);
==>
|
|