|
D.16.1.4 maximalGroebnerCone
Syntax:
maximalGroebnerCone( poly g )
maximalGroebnerCone( ideal I )
Assume:
- I reduced standard basis
Type:
- cone
Purpose:
- the euklidean closure of all weight vectors with respect to whom the initial form of g equals its leading term or the initial ideal of I equals its leading ideal.
Example:
| LIB "gfanlib.so";
ring r = 0,(x,y),dp;
poly g = x+y+1;
cone C = maximalGroebnerCone(g);
rays(C);
==> 0,-1,
==> 1, 1
generatorsOfLinealitySpace(C);
==>
ideal I = x2-y3,x3-y2-x;
I = std(I);
C = maximalGroebnerCone(I);
rays(C);
==> 3,2,
==> 2,3
generatorsOfLinealitySpace(C);
==>
|
|