Home Online Manual
Top
Back: rMacaulay
Forward: showrecursive
FastBack: grobcov_lib
FastForward: poly_lib
Up: inout_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.2.5.5 show

Procedure from library inout.lib (see inout_lib).

Usage:
show(id); id any object of basering or of type ring/qring
show(R,s); R=ring, s=string (s = name of an object belonging to R)

Display:
display id/s in a compact format together with some information

Return:
no return value

Note:
objects of type string, int, intvec, intmat belong to any ring. id may be a ring or a qring. In this case the minimal polynomial is displayed, and, for a qring, also the defining ideal.
id may be of type list but the list must not contain a ring.
show(R,s) does not work inside a procedure!

Example:
 
LIB "inout.lib";
ring r;
show(r);
==> // ring: (32003),(x,y,z),(dp(3),C);
==> // minpoly = 0
==> // objects belonging to this ring:
ideal i=x^3+y^5-6*z^3,xy,x3-y2;
show(i,3);            // introduce 3 space tabs before information
==>    // ideal, 3 generator(s)
==> y5+x3-6z3,
==> xy,
==> x3-y2
vector v=x*gen(1)+y*gen(3);
module m=v,2*v+gen(4);
list L = i,v,m;
show(L);
==> // list, 3 element(s):
==> [1]:
==>    // ideal, 3 generator(s)
==> y5+x3-6z3,
==> xy,
==> x3-y2
==> [2]:
==>    // vector
==> [x,0,y]
==> [3]:
==>    // module, 2 generator(s)
==> [x,0,y]
==> [2x,0,2y,1]
ring S=(0,T),(a,b,c,d),ws(1,2,3,4);
minpoly = T^2+1;
ideal i=a2+b,c2+T^2*d2; i=std(i);
qring Q=i;
show(Q);
==> // ring: (0,T),(a,b,c,d),(ws(1,2,3,4),C);
==> // minpoly = (T2+1)
==> // quotient ring from ideal:
==> _[1]=a2+b
==> _[2]=c2-d2
==> // objects belonging to this ring:
map F=r,a2,b^2,3*c3;
show(F);
==> // i-th variable of preimage ring is mapped to @map[i]
==> // @map map  from r
==> @map[1]=a2
==> @map[2]=b2
==> @map[3]=3*c3
// Apply 'show' to i (which does not belong to the basering) by typing
// ring r; ideal i=xy,x3-y2; ring Q; show(r,"i");