Procedures:
D.2.6.1 cyclic ideal of cyclic n-roots D.2.6.2 elemSymmId ideal of elementary symmetric polynomials D.2.6.3 katsura katsura [i] ideal D.2.6.4 freerank rank of coker(input) if coker is free else -1 D.2.6.5 is_zero int, =1 resp. =0 if coker(input) is 0 resp. not D.2.6.6 lcm lcm of given generators of ideal D.2.6.7 maxcoef maximal length of coefficient occurring in poly/... D.2.6.8 maxdeg int/intmat = degree/s of terms of maximal order D.2.6.9 maxdeg1 int = [weighted] maximal degree of input D.2.6.10 mindeg int/intmat = degree/s of terms of minimal order D.2.6.11 mindeg1 int = [weighted] minimal degree of input D.2.6.12 normalize normalize poly/... such that leading coefficient is 1 D.2.6.13 rad_con check radical containment of polynomial p in ideal I D.2.6.14 content content of polynomial/vector f D.2.6.15 mod2id conversion of a module M to an ideal D.2.6.16 id2mod conversion inverse to mod2id D.2.6.17 substitute substitute in I variables by polynomials D.2.6.18 subrInterred interred w.r.t. a subset of variables D.2.6.19 newtonDiag Newton diagram of a polynomial D.2.6.20 hilbPoly Hilbert polynomial of basering/I