|
D.15.10.1 curveDeltaInv
Procedure from library curveInv.lib (see curveInv_lib).
- Usage:
- curveDeltaInv(I); I ideal
- Assume:
- I is a radical ideal, dim(R/I) = 1
- Return:
- the delta invariant of R/I
- Note:
- - output -1 means: delta invariant is infinite
- the optional parameter can be used if the normalization has already
been computed. If a list L contains the output of the procedure
normal (with options prim, wd and usering if the ring has a mixed ordering),
apply curveDeltaInv(I,L)
Example:
| LIB "curveInv.lib";
ring R = 0,(x,y,z),ds;
////////////////////////////
// Finite delta invariant //
////////////////////////////
ideal I = x2y-y2z,x2-y2+z2;
curveDeltaInv(radical(I));
==> 9
//////////////////////////////
// Infinite delta invariant //
//////////////////////////////
ideal J = xyz;
curveDeltaInv(radical(J));
==> -1
| See also:
curveConductorMult;
curveDeligneNumber.
|