Home Online Manual
Top
Back: curveDeltaInv
Forward: curveDeligneNumber
FastBack:
FastForward:
Up: curveInv_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.15.10.2 curveConductorMult

Procedure from library curveInv.lib (see curveInv_lib).

Usage:
curveConductorMult(I); I ideal

Assume:
I is a radical ideal, dim(R/I) = 1

Return:
the multiplicity of the conductor

Note:
the optional parameter can be used if the normalization has already been computed. If a list L contains the output of the procedure normal (with options prim, wd and usering if the ring has a mixed ordering), apply curveConductorMult(I,L)

Example:
 
LIB "curveInv.lib";
//////////////////////////////////////////////
// Mutltiplicity of the conductor of curves //
//////////////////////////////////////////////
ring R = 0,(x,y,z),ds;
// Example 1:
ideal I = x2-y4z,z3y2+xy2;
I = std(radical(I));
curveConductorMult(I);
==> 23
// Example 2:
ideal I = x*(y+z)^3 - y3, x2y2 + z5;
==> // ** redefining I (ideal I = x*(y+z)^3 - y3, x2y2 + z5;) ./examples/curv\
   eConductorMult.sing:11
I = std(radical(I));
curveConductorMult(I);
==> 19
kill R;
////////////////////////////////////////////////////////
// Mutltiplicity of the conductor of Gorenstein curve //
////////////////////////////////////////////////////////
ring R = 0,(x,y),ds;
ideal I = xy;
// In such a case, the conductor multiplicity c satisfies: c = 2*delta
// Delta invariant:
curveDeltaInv(I);
==> 1
// Conductor Multiplicity:
curveConductorMult(I);
==> 2
See also: normalConductor.