|  |  5.1.105 nres 
See
 fres;
 hres;
 ideal;
 lres;
 module;
 mres;
 res;
 resolution;
 sres.Syntax:nres (ideal_expression,int_expression)
 nres (module_expression,int_expression)Type:resolution
Purpose:computes a free resolution of an ideal or module M which is minimized from
the second module on (by the standard basis method).
More precisely, let
 =matrix(M),then nrescomputes a free resolution of  
 
 where the columns of the matrix
  are the given set of generators of M.
If the int expression k is not zero then the computation stops after k steps
and returns a list of modules  . 
 nres(M,0)returns a list of n modules where n is the number of
variables of the basering.
Letlist L=nres(M,0);thenL[1]=Mis identical to the input,L[2]is a minimal set of generators for the first syzygy
module ofL[1], etc.
(![${\tt L[i]}=M_i$](sing_135.png) in the notations from above).Example:|  |   ring r=31991,(t,x,y,z,w),ls;
  ideal M=t2x2+tx2y+x2yz,t2y2+ty2z+y2zw,
          t2z2+tz2w+xz2w,t2w2+txw2+xyw2;
  resolution L=nres(M,0);
  L;
==>  1      4      15      18      7      1      
==> r <--  r <--  r <--   r <--   r <--  r
==> 
==> 0      1      2       3       4      5      
==> resolution not minimized yet
==> 
 | 
 |