210{
211
212 clog << endl;
213 clog << (
"----------------------- Testing coeffs: [" + _2S(type) +
", " + _2S(
p) +
"]: -----------------------");
214 clog << endl;
215
217
219 {
220 clog << ( "Test: could not get this coeff. domain" );
222 };
223
225
226 if( r->cfCoeffWrite !=
NULL )
227 {
228 clog << "Coeff-domain: " << endl;
230 }
231
233 {
235 PrintS(
"Parameter: "); PrintSized(z, r);
237 }
238
239
240 clog <<
"Char: " <<
n_GetChar(r) << endl;
241
242
246
251
252 switch( type )
253 {
255 {
256
257
258
259
262
266
280
281 break;
282 }
284 {
285
286
287
288 break;
289 }
291 {
292
293
294
295 break;
296 }
298 {
299
300
301
302 break;
303 }
305 {
306
307
308
309 break;
310 }
311#ifdef HAVE_RINGS
313 {
314
315
316
317 break;
318 }
320 {
321
322
323
324 break;
325 }
326#endif
327 default:
328 {
329
330 }
331 }
332
339
341
343}
#define TS_ASSERT_EQUALS(x, y)
#define TS_ASSERT_DIFFERS(x, y)
static FORCE_INLINE number n_Param(const int iParameter, const coeffs r)
return the (iParameter^th) parameter as a NEW number NOTE: parameter numbering: 1....
static FORCE_INLINE BOOLEAN nCoeff_has_Units(const coeffs r)
returns TRUE, if r is not a field and r has non-trivial units
static FORCE_INLINE void n_CoeffWrite(const coeffs r, BOOLEAN details=TRUE)
output the coeff description
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_Z(const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_Extension(const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_long_R(const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_Ring_PtoM(const coeffs r)
@ n_R
single prescision (6,6) real numbers
@ n_Q
rational (GMP) numbers
@ n_Zn
only used if HAVE_RINGS is defined
@ n_long_R
real floating point (GMP) numbers
@ n_Z2m
only used if HAVE_RINGS is defined
@ n_long_C
complex floating point (GMP) numbers
static FORCE_INLINE BOOLEAN nCoeff_is_CF(const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_numeric(const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_Domain(const coeffs r)
returns TRUE, if r is a field or r has no zero divisors (i.e is a domain)
static FORCE_INLINE BOOLEAN nCoeff_has_simple_inverse(const coeffs r)
TRUE, if the computation of the inverse is fast, i.e. prefer leading coeff. 1 over content.
static FORCE_INLINE BOOLEAN nCoeff_is_Q(const coeffs r)
coeffs nInitChar(n_coeffType t, void *parameter)
one-time initialisations for new coeffs in case of an error return NULL
static FORCE_INLINE void nSetChar(const coeffs r)
initialisations after each ring change
static FORCE_INLINE BOOLEAN nCoeff_has_simple_Alloc(const coeffs r)
TRUE if n_Delete is empty operation.
static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
static FORCE_INLINE n_coeffType getCoeffType(const coeffs r)
Returns the type of coeffs domain.
static FORCE_INLINE int n_GetChar(const coeffs r)
Return the characteristic of the coeff. domain.
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
static FORCE_INLINE BOOLEAN nCoeff_is_Zn(const coeffs r)
static FORCE_INLINE int n_NumberOfParameters(const coeffs r)
Returns the number of parameters.
static FORCE_INLINE BOOLEAN nCoeff_is_Zp(const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_Ring_2toM(const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_R(const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_long_C(const coeffs r)
void nKillChar(coeffs r)
undo all initialisations
void TestArith(const coeffs r)
void TestSum(const coeffs r, const unsigned long N)
The main handler for Singular numbers which are suitable for Singular polynomials.
void PrintS(const char *s)